I /e MSAT : AnOCamlSAT Solver

Guillaume Bury
DEDUCHEAM (INRIA)-LSV / CNRS

guillaume.bury@inria.fr

\ y
Introduction Problem Example
mSAT : a SAT solving library in OCaml. It solves the satisfibility of pro- Are the following Hl: aq=17 H2 b=cVDb=d

positional clauses. It is Modular : the user provides the theory. And it

produces formal proofs. hypotheses satisfiable? H3:a<>d H4: a<>c

o - . [b!=d], [b!=a], [a ==d] W: [b!=c], [b!=a], [a==c] [a!= c]
lemma lemma
Conflict Driven Clause Learning “ L m L
Propagation If there exists a clause C' = C’V a, where C’ is false in the (la==cl >
partial model, then add a — T to the partial model, and record C as the
[b!=a], [b'!=d] [b == a] [b!=a], [b'!=Cc]
reason for a. Resolution | R3 H1 Resolution | R4

Decision Take an atom a that is not yet in the partial model, and add
a — T to the model. [b == a]

Conflict A conflict is a clause C' that is false in the current partial model.

[b!=c]
Resolution|C1

Analyze Perform resolution between the analyzed clause and the reason

behind the propagation of its most recently assigned litteral, until the v
. . . [b = d]
analyzed clause is suitable for backumping. Resolution|C2 @
Backjump A clause is suitable for backjumping if its most recently assi- o
. . . . [b==d]
gned litteral a is a decision. We can then backtrack to before the decision, Resolution|R1

and add the analyzed clause to the solver, which will then enable to pro-
pagate a — _L.

SMT Formulas using first-order theories can be handled using a theory.
1
Each formula propagated or decided is sent to the theory, which then has _@
the duty to check whether the conjunction of all formulas seen so far is
satisfiable, if not, it should return a theory tautology (as a clause), that

is not satisfied in the current partial model.

Theory Interface

g type ('f, 'p) res = Sat | Unsat of 'f list * 'p
Implementatlon type 'f slice = { start:int; length:int; get:int -> 'f }
» Imperative design module type 5 = sig

v 2-watch litteral val backtrack : level —> unit

val current_level : unit -> level
v" Backtrackable theories (less demanding than immutable theories) val assume : formula slice -> (formula, proof) res

» Features end

v’ Functorized design, using generative functors

v Local assumptions Proof Generation
v"Model output and proof output (Coq, dot) v' Each clause records its "history” which is the clauses used during analyzing
v Minimal impact on proof search (already done to compute unsat-core)
S()l\[er |nterface v Sufficient to rebuild the whole resolution tree
module Make(Th: Theory_intf.S)() : sig v" A proof is a clause and proof nodes are expanded on demand
type 'f sat_state = { eval : 'f -> bool; ... } — NO memory Issue
type ('c,'p) unsat_state = v’ Enables various proof outputs :

{ conflict: unit -> 'c; proof : unit -> 'p } e Dot /Graphviz (see example above)

type res = Sat of formula sat_state

| Unsat of (clause, proof) unsat_state e Coq (and soon Dedukti) formal proofs

val assume : 7tag:int -> atom list list -> unit

val solve : 7assumptions:atom list —-> unit —-> res Performances
end

solver Alt-ergo-zero mSAT minisat cryptominisat

(package) aez msat (minisat/sattools) (sattools)

Other Solvers Gufl00 (1000 pbs) 0.125 0012 0.004 0.006

regstab SAT binary only | only pure SAT uufl25 (100 pbs) 2.217 0.030 0.006 0.013

minisat uufl50 (100 pbs) 67.563 0.087 0.017 0.045

sattools SAT C bindings only pure SAT vigeon /holeb 0.120 0.018 0.006 0.006

ocaml-sat-solvers vigeon /hole7? 4.257 0.213 0.015 0.073

Alt-ergo SMT binary only Fixed theory vigeon /hole8 31.450 0.941 0.096 2.488

Alt-ergo-zero SMT OCaml lib Fixed theory vigeon /hole9 'timeout (600) 8.886 0.634 4.075

oc;a/irlglzces SMT C bindings Fixed theory pigeon /holel0 timeout (600) 161.478 12(-)2?6(2::;5) 72.050

