
mSAT:AnOCamlSATSolver
Guillaume Bury

DEDUC`EAM (INRIA) - LSV / CNRS
guillaume.bury@inria.fr

mSAT : a SAT solving library in OCaml. It solves the satisfibility of pro-
positional clauses. It is Modular : the user provides the theory. And it
produces formal proofs.

Introduction

Propagation If there exists a clause C = C ′∨ a, where C ′ is false in the
partial model, then add a 7→ > to the partial model, and record C as the
reason for a.

Decision Take an atom a that is not yet in the partial model, and add
a 7→ > to the model.

Conflict A conflict is a clause C that is false in the current partial model.
Analyze Perform resolution between the analyzed clause and the reason

behind the propagation of its most recently assigned litteral, until the
analyzed clause is suitable for backumping.

Backjump A clause is suitable for backjumping if its most recently assi-
gned litteral a is a decision. We can then backtrack to before the decision,
and add the analyzed clause to the solver, which will then enable to pro-
pagate a 7→ ⊥.

SMT Formulas using first-order theories can be handled using a theory.
Each formula propagated or decided is sent to the theory, which then has
the duty to check whether the conjunction of all formulas seen so far is
satisfiable, if not, it should return a theory tautology (as a clause), that
is not satisfied in the current partial model.

Conflict Driven Clause Learning

I Imperative design
X2-watch litteral
XBacktrackable theories (less demanding than immutable theories)

IFeatures
XFunctorized design, using generative functors
XLocal assumptions
XModel output and proof output (Coq, dot)

Implementation

module Make(Th: Theory_intf.S)() : sig

type 'f sat_state = { eval : 'f -> bool; ... }

type ('c,'p) unsat_state =

{ conflict: unit -> 'c; proof : unit -> 'p }

type res = Sat of formula sat_state

| Unsat of (clause, proof) unsat_state

val assume : ?tag:int -> atom list list -> unit

val solve : ?assumptions:atom list -> unit -> res

end

Solver Interface

regstab SAT binary only only pure SAT
minisat
sattools

ocaml-sat-solvers
SAT C bindings only pure SAT

Alt-ergo SMT binary only Fixed theory
Alt-ergo-zero SMT OCaml lib Fixed theory

ocamlyices
yices2 SMT C bindings Fixed theory

Other Solvers

Are the following H1 : a = b H2 : b = c ∨ b = d

hypotheses satisfiable ? H3 : a <> d H4 : a <> c

⟦b != d⟧, ⟦b != a⟧, ⟦a == d⟧

lemma T2

⟦a == d⟧

⟦a != d⟧

hypothesis H3

⟦b != a⟧, ⟦b != d⟧

Resolution R3

⟦b == a⟧

⟦b == a⟧

hypothesis H1

⟦b == a⟧

⟦b != d⟧

Resolution C2

⟦b == d⟧

⟦b == d⟧, ⟦b == c⟧

hypothesis H2

⟦b == c⟧

⟦b != c⟧, ⟦b != a⟧, ⟦a == c⟧

lemma T1

⟦a == c⟧

⟦a != c⟧

hypothesis H4

⟦b != a⟧, ⟦b != c⟧

Resolution R4

⟦b != c⟧

Resolution C1

⟦b == d⟧

Resolution R1

⊥

Resolution R2

Problem Example

type ('f, 'p) res = Sat | Unsat of 'f list * 'p
type 'f slice = { start:int; length:int; get:int -> 'f }

module type S = sig

val backtrack : level -> unit

val current_level : unit -> level

val assume : formula slice -> (formula, proof) res

end

Theory Interface

XEach clause records its ”history” which is the clauses used during analyzing
XMinimal impact on proof search (already done to compute unsat-core)
XSufficient to rebuild the whole resolution tree
XA proof is a clause and proof nodes are expanded on demand
→ no memory issue

XEnables various proof outputs :
•Dot/Graphviz (see example above)
•Coq (and soon Dedukti) formal proofs

Proof Generation

solver
(package)

Alt-ergo-zero
aez

mSAT
msat

minisat
(minisat/sattools)

cryptominisat
(sattools)

uuf100 (1000 pbs) 0.125 0.012 0.004 0.006
uuf125 (100 pbs) 2.217 0.030 0.006 0.013
uuf150 (100 pbs) 67.563 0.087 0.017 0.045

pigeon/hole6 0.120 0.018 0.006 0.006
pigeon/hole7 4.257 0.213 0.015 0.073
pigeon/hole8 31.450 0.941 0.096 2.488
pigeon/hole9 timeout (600) 8.886 0.634 4.075

pigeon/hole10 timeout (600) 161.478 9.579 (minisat)

160.376 (sattools)
72.050

Performances


