mSAT: A Modular SAT Solver

Guillaume Bury
October 2, 2017

Université Paris Diderot; Inria; LSV, ENS Cachan

Guillaume Bury mSAT: A Modular SAT Solver 1/26

Introduction

Introduction: mSAT

e SAT/SMT Solving library in OCaml
e Modular: provide your own theory

e Proof producing: check your proofs in Coq

Guillaume Bury mSAT: A Modular SAT Solver 2/26

Some design decisions

Forked from Alt-Ergo-Zero

Imperative design
e Functorized for modularity

Generative functors

Guillaume Bury mSAT: A Modular SAT Solver 3/26

Introduction

SAT Solving
The SAT Algorithm

Some examples

SMT Solving
SMT Algorithm

Building your own SMT

Conclusion

Guillaume Bury mSAT: A Modular SAT Solver 4/26

SAT Solving

Goal of the algorithm

Input A set of clauses of propositional formulas, for
instance:

PA(=PV Q) A (=P V-Q)

Output Either:

e A model of the input clauses
e A proof the the clauses are unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 5/26

Simplified control flow

SAT Core

Decision

Boolean propagation

Figure 1: Simplified SAT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 6/26

SAT Solving Algorithm

e Maintain a partial propositional model
e Propagation
o If there exists a clause C = aV ¢; V...V ¢, where every
¢i ~» L in the current partial model, then add a ~»¢ T to the
model
e Record the clause C as the reason for the propagation of a
e Decision

e When no propagation is possible
e Choose an unassigned litteral a
e Add a+— T to the model

Guillaume Bury mSAT: A Modular SAT Solver 7/26

S Solving Algorithm

e When there is a clause C = ¢; V...V ¢,, where every ¢; — L,
begin analyzing with current clause C

e Walk back the propagations/decisions from most recent

e If the currently looked at atom is:

e Not part of the current clause, continue
e part of the current clause, and propagated by a clause D,
perform a resolution between the current clause and D:

CVvp -pV D
cvD

Guillaume Bury mSAT: A Modular SAT Solver 8/26

SAT Solving - Example sat

e G =-p(a)V p(b), o =—p(a) VvV —p(b)

e Problem: find a model or a proof of false

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

e G =-p(a)V p(b), o =—p(a) VvV —p(b)
e Problem: find a model or a proof of false

e Decision: p(a) — T

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

e G =-p(a)V p(b), o =—p(a) VvV —p(b)
e Problem: find a model or a proof of false
e Decision: p(a) — T

e Propagation in C; = —p(a) V p(b): p(b) ~>¢, T

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

e G =-p(a)V p(b), o =—p(a) VvV —p(b)

Problem: find a model or a proof of false

Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

e G =-p(a)V p(b), o =—p(a) VvV —p(b)

Problem: find a model or a proof of false

Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T

Conflict: G, = —p(a) V —p(b) not satisfied

Resolution between C; = —p(a) vV —p(b) and
G = -p(a) V p(b)

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

G = —p(a) v p(b), G = —p(a) V =p(b)

Problem: find a model or a proof of false

Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied

Resolution between C; = —p(a) vV —p(b) and

G = —p(a) v p(b)

New clause : C3 = —p(a), backtrack to before decision.

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

G = —p(a) v p(b), G = —p(a) V =p(b)

Problem: find a model or a proof of false

Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied

Resolution between C; = —p(a) vV —p(b) and

G = —p(a) v p(b)

New clause : C3 = —p(a), backtrack to before decision.

Propagation: p(a) ~»¢, L

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

G = —p(a) v p(b), G = —p(a) V =p(b)

Problem: find a model or a proof of false

Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied

Resolution between C; = —p(a) vV —p(b) and

G = —p(a) V p(b)

New clause : C3 = —p(a), backtrack to before decision.
Propagation: p(a) ~»¢, L

Decision: p(b) — T

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

G = —p(a) v p(b), G = —p(a) V =p(b)
Problem: find a model or a proof of false
Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied
Resolution between C; = —p(a) vV —p(b) and

G = —p(a) V p(b)

New clause : C3 = —p(a), backtrack to before decision.
Propagation: p(a) ~»¢, L

Decision: p(b) — T

Propagation (nothing to do)

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example sat

G = —p(a) v p(b), G = —p(a) V =p(b)
Problem: find a model or a proof of false
Decision: p(a) — T

Propagation in C; = —p(a) Vv p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied
Resolution between C; = —p(a) vV —p(b) and

G = —p(a) V p(b)

New clause : C3 = —p(a), backtrack to before decision.
Propagation: p(a) ~»¢, L

Decision: p(b) — T

Propagation (nothing to do)

Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9/26

SAT Solving - Example unsat

o Co=p(a), G =~p(a) Vv p(b), g =—p(a) V —p(b)

e Problem: find a model or a proof of false

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

e Go=p(a), G =-p(a) vV p(b), GG =—p(a) V =p(b)
e Problem: find a model or a proof of false

e Propagation: p(a) —¢, T

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

Co = p(a), . = ~p(a) V p(b), G = ~p(a) V —p(b)

Problem: find a model or a proof of false

Propagation: p(a) —¢, T

Propagation in C; = —p(a) VvV p(b): p(b) ~¢, T

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

Co = p(a), . = ~p(a) V p(b), G = ~p(a) V —p(b)

Problem: find a model or a proof of false

Propagation: p(a) —¢, T

Propagation in C; = —p(a) VvV p(b): p(b) ~¢, T
Conflict: G, = —p(a) V —p(b) not satisfied

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

e Go=p(a), G =-p(a) vV p(b), GG =—p(a) V =p(b)
e Problem: find a model or a proof of false

e Propagation: p(a) —¢, T

e Propagation in C; = —p(a) V p(b): p(b) ~>¢, T

e Conflict: G, = —p(a) vV =p(b) not satisfied

e Resolution between C; = —p(a) V —p(b) and
G = —p(a) V p(b)

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

e Go=p(a), G =-p(a) vV p(b), GG =—p(a) V =p(b)
e Problem: find a model or a proof of false

e Propagation: p(a) —¢, T

e Propagation in C; = —p(a) V p(b): p(b) ~>¢, T

e Conflict: G, = —p(a) vV =p(b) not satisfied

e Resolution between C; = —p(a) V —p(b) and
G = —p(a) V p(b)
e Resolution between T; = —p(a) and Gy = p(a)

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

e Go=p(a), G =-p(a) vV p(b), GG =—p(a) V =p(b)
e Problem: find a model or a proof of false
e Propagation: p(a) —¢, T
e Propagation in C; = —p(a) V p(b): p(b) ~>¢, T
e Conflict: G, = —p(a) vV =p(b) not satisfied
e Resolution between C; = —p(a) V —p(b) and
G = -p(a) V p(b)
e Resolution between T; = —p(a) and Gy = p(a)
e Empty clause C4 = L reached

Guillaume Bury mSAT: A Modular SAT Solver 10/26

SAT Solving - Example unsat

e Go=p(a), G =-p(a) vV p(b), GG =—p(a) V =p(b)
e Problem: find a model or a proof of false
e Propagation: p(a) —¢, T
e Propagation in C; = —p(a) V p(b): p(b) ~>¢, T
e Conflict: G, = —p(a) vV =p(b) not satisfied
e Resolution between C; = —p(a) V —p(b) and
G = -p(a) V p(b)
e Resolution between T; = —p(a) and Gy = p(a)
e Empty clause C4 = L reached

e Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10/26

Builtin SAT (1)

(* Module initialization *)

module Sat = Msat.Sat.Make()

module E = Msat.Sat.Expr (* expressions *)
module F = Msat.Tseitin.Make(E)

(* We create here two distinct atoms *)
let a = E.fresh ()

let b = E.make 1

Guillaume Bury mSAT: A Modular SAT Solver 11/26

Builtin SAT (2)

(¥ Let's create some formulas *)

let
let
let
let

let
let

let
let

p = F.make_atom a

q = F.make_atom b
r = F.make_and [p; q]
s

F.make_or [F.make_not p; F.make_not q]

() = Sat.assume (F.make_cnf r)
_ = Sat.solve () (* Should return (Sat.Sat _) *)

() = Sat.assume (F.make_cnf s)
_ = Sat.solve () (* Should return (Sat.Unsat _) *)

Guillaume Bury mSAT: A Modular SAT Solver 12/26

SAT Solving - proofs

[#2], [- #1] [#1] [- #2], [~ #1]
Hypothesis [hyp 2 Hypothesis [hyp_1 Hypothesis [hyp 3

[#2] [— #2]
Resolution|R2 Resolution|L1

1
Resolution|R1

Guillaume Bury mSAT: A Modular SAT Solver 13 /26

SMT Solving

Goal of the algorithm

Input A set of clauses of first-order formulas, for instance:
(a=b)A(a<>c)AN(a<>d)AN(a=cVa=d)

Output Either:

e A model of the input clauses
e A proof the the clauses are unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 14 /26

Simplified control flow

SAT Core

Decision

Boolean propagation

Figure 2: Simplified SAT/SMT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 15 /26

Simplified control flow

SAT Core Theory

Decision

X assertions -
Boolean propagation Theory propagation

Figure 2: Simplified SAT/SMT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 15 /26

SMT proofs vs SAT proofs

e Leafs can be either:
e A Hypothesis
e A Theory lemma
e A theory lemma is a tautology in the theory, for instance:
e Equality reflexivity: Lemma = (a = a)
e Equality transitivty: Lemma =—(a=b)V —~(b=c)V(a=c)
e Equality substitution: Lemma = —(a = b) V (f(a) = (b))

Guillaume Bury mSAT: A Modular SAT Solver 16 /26

SMT proofs

I

Resolution|C2

bi=clb'=alla==c]

[Resoluion T 7 |

la 1

17/26

The Solver Functor

module Make
(F : Formula_intf.S)
(Th : Theory_intf.S with type formula = F.t
and type proof = F.proof)
(Dummy: sig end)
S with type St.formula = F.t
and type St.proof = F.proof

Guillaume Bury mSAT: A Modular SAT Solver 18/26

The Formula interface

type negated = Negated | Same_sign

module type S = sig
type t
type proof

val hash : t -> int
val equal : t -> t -> bool

val print : Format.formatter -> t -> unit

val dummy : t

val neg : t -> t

val norm : t -> t * negated
end

Guillaume Bury mSAT: A Modular SAT Solver 19 /26

The Theory interface

type ('f, 'p) res = Sat | Unsat of 'f list * 'p
type 'f slice = { start:int; length:int; get:int -> 'f }

module type S = sig
type £ (** formulas *)

type proof

type level

val dummy : level

val current_level : unit -> level

val backtrack : level -> unit

val assume : (f, proof) slice -> (f, proof) res
val if_sat : (f, proof) slice -> (f, proof) res

end

Guillaume Bury mSAT: A Modular SAT Solver 20 /26

The Solver interface

type 'f sat_state =
{ eval : 'f -> bool; ... }

type ('c,'p) unsat_state =
{ conflict: unit -> 'c; proof : unit -> 'p }

type res = Sat of formula sat_state

| Unsat of (clause, proof) unsat_state
val assume : 7tag:int -> atom list list -> unit

val solve : 7assumptions:atom list -> unit -> res

Guillaume Bury mSAT: A Modular SAT Solver 21/26

e Dot output

e Forma Coq output

Guillaume Bury mSAT: A Modular SAT Solver 22/26

Conclusion

Related Works

regstab SAT binary only only pure SAT
minisat
sattools SAT C bindings only pure SAT
ocaml-sat-solvers
Alt-ergo SMT binary only Fixed theory
Alt-ergo-zero SMT OCaml lib Fixed theory
ocamlyices SMT | Cbindings | Fixed theory
yices2

Guillaume Bury mSAT: A Modular SAT Solver 23 /26

Performances

solver Alt-ergo-zero | mSAT ml_m,sat cryptominisat
(minisat
(package) (aez) (msat) sattools) (sattools)

uuf100 (1000 pbs) 0.125 0.012 0.004 0.006

uuf125 (100 pbs) 2217 0.030 0.006 0.013

uuf150 (100 pbs) 67.563 0.087 0.017 0.045

pigeon/hole6 0.120 0.018 0.006 0.006

pigeon/hole7 4.257 0.213 0.015 0.073

pigeon/hole8 31.450 0.941 0.096 2.488

pigeon/hole9 timeout (600) | 8.886 0.634 4.075

9.579

pigeon/hole10 | timeout (600) | 161.478 (1”;'(;”;2 72.050

(sattools)
mSAT: A Modular SAT Solver 24 /26

Conclusion

Pure OCaml SAT Solver
Decent performances

Modular

Proof producing (Coq, and soon Dedukti)

Available on opam, and on github:
https://github.com/Gbury/mSAT

Guillaume Bury mSAT: A Modular SAT Solver 25 /26

Proof objects

type proof
and proof_node = {
conclusion : clause;

step : step;

X
and step =
| Hypothesis
Assumption

Lemma of lemma

Duplicate of proof * atom list

|
|
|
| Resolution of proof * proof * atom

(*¥* The type of reasoning steps allowed in a proof. *)

Guillaume Bury mSAT: A Modular SAT Solver 26 /26

	Introduction
	SAT Solving
	The SAT Algorithm
	Some examples

	SMT Solving
	SMT Algorithm
	Building your own SMT

	Conclusion

