
mSAT: A Modular SAT Solver

Guillaume Bury

October 2, 2017

Université Paris Diderot; Inria; LSV, ENS Cachan

Guillaume Bury mSAT: A Modular SAT Solver 1 / 26

Introduction

Introduction: mSAT

• SAT/SMT Solving library in OCaml

• Modular: provide your own theory

• Proof producing: check your proofs in Coq

Guillaume Bury mSAT: A Modular SAT Solver 2 / 26

Some design decisions

• Forked from Alt-Ergo-Zero

• Imperative design

• Functorized for modularity

• Generative functors

Guillaume Bury mSAT: A Modular SAT Solver 3 / 26

Introduction

SAT Solving

The SAT Algorithm

Some examples

SMT Solving

SMT Algorithm

Building your own SMT

Conclusion

Guillaume Bury mSAT: A Modular SAT Solver 4 / 26

SAT Solving

Goal of the algorithm

Input A set of clauses of propositional formulas, for
instance:

P ∧ (¬P ∨ Q) ∧ (¬P ∨ ¬Q)

Output Either:

• A model of the input clauses
• A proof the the clauses are unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 5 / 26

Simplified control flow

SAT Core

Decision

Boolean propagation

Figure 1: Simplified SAT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 6 / 26

SAT Solving Algorithm

• Maintain a partial propositional model

• Propagation
• If there exists a clause C = a ∨ c1 ∨ . . . ∨ cn, where every

ci ⊥ in the current partial model, then add a C > to the
model

• Record the clause C as the reason for the propagation of a

• Decision
• When no propagation is possible
• Choose an unassigned litteral a
• Add a 7→ > to the model

Guillaume Bury mSAT: A Modular SAT Solver 7 / 26

SAT Solving Algorithm

• When there is a clause C = c1 ∨ . . . ∨ cn, where every ci 7→ ⊥,
begin analyzing with current clause C

• Walk back the propagations/decisions from most recent

• If the currently looked at atom is:
• Not part of the current clause, continue
• part of the current clause, and propagated by a clause D,

perform a resolution between the current clause and D:

C ∨ p ¬p ∨ D

C ∨ D

Guillaume Bury mSAT: A Modular SAT Solver 8 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >

• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >

• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied

• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥

• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >

• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !

Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example sat

• C1 = ¬p(a) ∨ p(b),C2 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Decision: p(a) 7→ >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• New clause : C3 = ¬p(a), backtrack to before decision.

• Propagation: p(a) C3 ⊥
• Decision: p(b) 7→ >
• Propagation (nothing to do)

• Model Found !
Guillaume Bury mSAT: A Modular SAT Solver 9 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >

• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >

• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied

• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

SAT Solving - Example unsat

• C0 = p(a),C1 = ¬p(a) ∨ p(b),C3 = ¬p(a) ∨ ¬p(b)
• Problem: find a model or a proof of false

• Propagation: p(a) 7→C0 >
• Propagation in C1 = ¬p(a) ∨ p(b): p(b) C1 >
• Conflict: C2 = ¬p(a) ∨ ¬p(b) not satisfied
• Resolution between C2 = ¬p(a) ∨ ¬p(b) and
C1 = ¬p(a) ∨ p(b)

• Resolution between T1 = ¬p(a) and C0 = p(a)

• Empty clause C4 = ⊥ reached

• Input problem is unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 10 / 26

Builtin SAT (1)

(* Module initialization *)
module Sat = Msat.Sat.Make()
module E = Msat.Sat.Expr (* expressions *)
module F = Msat.Tseitin.Make(E)
(* We create here two distinct atoms *)
let a = E.fresh ()
let b = E.make 1

Guillaume Bury mSAT: A Modular SAT Solver 11 / 26

Builtin SAT (2)

(* Let's create some formulas *)
let p = F.make_atom a
let q = F.make_atom b
let r = F.make_and [p; q]
let s = F.make_or [F.make_not p; F.make_not q]

let () = Sat.assume (F.make_cnf r)
let _ = Sat.solve () (* Should return (Sat.Sat _) *)

let () = Sat.assume (F.make_cnf s)
let _ = Sat.solve () (* Should return (Sat.Unsat _) *)

Guillaume Bury mSAT: A Modular SAT Solver 12 / 26

SAT Solving - proofs

⟦#2⟧, ⟦¬ #1⟧

Hypothesis hyp_2

⟦#1⟧

⟦#1⟧

Hypothesis hyp_1

⟦#1⟧

⟦#2⟧

Resolution R2

⟦#2⟧

⟦¬ #2⟧, ⟦¬ #1⟧

Hypothesis hyp_3

⟦¬ #2⟧

Resolution L1

⊥

Resolution R1

Guillaume Bury mSAT: A Modular SAT Solver 13 / 26

SMT Solving

Goal of the algorithm

Input A set of clauses of first-order formulas, for instance:

(a = b) ∧ (a <> c) ∧ (a <> d) ∧ (a = c ∨ a = d)

Output Either:

• A model of the input clauses
• A proof the the clauses are unsatisfiable

Guillaume Bury mSAT: A Modular SAT Solver 14 / 26

Simplified control flow

SAT Core

Decision

Boolean propagation

Theory

Theory propagation
assertions

Figure 2: Simplified SAT/SMT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 15 / 26

Simplified control flow

SAT Core

Decision

Boolean propagation

Theory

Theory propagation
assertions

Figure 2: Simplified SAT/SMT Solver architecture

Guillaume Bury mSAT: A Modular SAT Solver 15 / 26

SMT proofs vs SAT proofs

• Leafs can be either:
• A Hypothesis
• A Theory lemma

• A theory lemma is a tautology in the theory, for instance:
• Equality reflexivity: Lemma = (a = a)

• Equality transitivty: Lemma = ¬(a = b) ∨ ¬(b = c) ∨ (a = c)

• Equality substitution: Lemma = ¬(a = b) ∨ (f (a) = f (b))

Guillaume Bury mSAT: A Modular SAT Solver 16 / 26

SMT proofs

⟦b != d⟧, ⟦b != a⟧, ⟦a == d⟧

lemma T2

⟦a == d⟧

⟦a != d⟧

hypothesis H3

⟦b != a⟧, ⟦b != d⟧

Resolution R3 ⟦b == a⟧

⟦b == a⟧

hypothesis H1

⟦b == a⟧

⟦b != d⟧

Resolution C2

⟦b == d⟧
⟦b == d⟧, ⟦b == c⟧

hypothesis H2 ⟦b == c⟧

⟦b != c⟧, ⟦b != a⟧, ⟦a == c⟧

lemma T1 ⟦a == c⟧

⟦a != c⟧

hypothesis H4

⟦b != a⟧, ⟦b != c⟧

Resolution R4

⟦b != c⟧

Resolution C1

⟦b == d⟧

Resolution R1

⊥

Resolution R2

Guillaume Bury mSAT: A Modular SAT Solver 17 / 26

The Solver Functor

module Make
(F : Formula_intf.S)
(Th : Theory_intf.S with type formula = F.t

and type proof = F.proof)
(Dummy: sig end) :

S with type St.formula = F.t
and type St.proof = F.proof

Guillaume Bury mSAT: A Modular SAT Solver 18 / 26

The Formula interface

type negated = Negated | Same_sign

module type S = sig
type t
type proof

val hash : t -> int
val equal : t -> t -> bool
val print : Format.formatter -> t -> unit

val dummy : t
val neg : t -> t
val norm : t -> t * negated

end
Guillaume Bury mSAT: A Modular SAT Solver 19 / 26

The Theory interface

type ('f, 'p) res = Sat | Unsat of 'f list * 'p
type 'f slice = { start:int; length:int; get:int -> 'f }
module type S = sig

type f (** formulas *)
type proof

type level
val dummy : level
val current_level : unit -> level
val backtrack : level -> unit
val assume : (f, proof) slice -> (f, proof) res
val if_sat : (f, proof) slice -> (f, proof) res

end

Guillaume Bury mSAT: A Modular SAT Solver 20 / 26

The Solver interface

type 'f sat_state =
{ eval : 'f -> bool; ... }

type ('c,'p) unsat_state =
{ conflict: unit -> 'c; proof : unit -> 'p }

type res = Sat of formula sat_state
| Unsat of (clause, proof) unsat_state

val assume : ?tag:int -> atom list list -> unit

val solve : ?assumptions:atom list -> unit -> res

Guillaume Bury mSAT: A Modular SAT Solver 21 / 26

Proof output

• Dot output

• Forma Coq output

Guillaume Bury mSAT: A Modular SAT Solver 22 / 26

Conclusion

Related Works

regstab SAT binary only only pure SAT
minisat
sattools

ocaml-sat-solvers
SAT C bindings only pure SAT

Alt-ergo SMT binary only Fixed theory
Alt-ergo-zero SMT OCaml lib Fixed theory
ocamlyices
yices2

SMT C bindings Fixed theory

Guillaume Bury mSAT: A Modular SAT Solver 23 / 26

Performances

solver
(package)

Alt-ergo-zero
(aez)

mSAT
(msat)

minisat
(minisat
sattools)

cryptominisat
(sattools)

uuf100 (1000 pbs) 0.125 0.012 0.004 0.006
uuf125 (100 pbs) 2.217 0.030 0.006 0.013
uuf150 (100 pbs) 67.563 0.087 0.017 0.045
pigeon/hole6 0.120 0.018 0.006 0.006
pigeon/hole7 4.257 0.213 0.015 0.073
pigeon/hole8 31.450 0.941 0.096 2.488
pigeon/hole9 timeout (600) 8.886 0.634 4.075

pigeon/hole10 timeout (600) 161.478

9.579
(minisat)
160.376
(sattools)

72.050

Guillaume Bury mSAT: A Modular SAT Solver 24 / 26

Conclusion

• Pure OCaml SAT Solver

• Decent performances

• Modular

• Proof producing (Coq, and soon Dedukti)

• Available on opam, and on github:
https://github.com/Gbury/mSAT

Guillaume Bury mSAT: A Modular SAT Solver 25 / 26

Proof objects

type proof
and proof_node = {

conclusion : clause;
step : step;

}
and step =

| Hypothesis
| Assumption
| Lemma of lemma
| Duplicate of proof * atom list
| Resolution of proof * proof * atom

(** The type of reasoning steps allowed in a proof. *)

Guillaume Bury mSAT: A Modular SAT Solver 26 / 26

	Introduction
	SAT Solving
	The SAT Algorithm
	Some examples

	SMT Solving
	SMT Algorithm
	Building your own SMT

	Conclusion

