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Introduction

• McSat: Model Constructing Sat

• Implementation as a functor : mSAT

• Instanciation with meaningful theories : Archsat
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McSat



Simplified SMT control flow

SAT Core Theory

Decision (boolean)

Boolean propagation Theory propagation

Figure 1: Simplified SMT Solver architecture
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Motivation

Further integrate theory reasoning in the SAT solver

• Devan Jovanovic, Clark Barrett, and Leonardo de Moura. “The
Design and Implementation of the Model Constructing Satisfiability
Calculus”. In: 2013

• Devan Jovanovic and Leonardo de Moura. “A Model-Constructing
Satisfiability Calculus”. In: 2013
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McSat principle

• Decisions on propositions but also on assignment for terms

• Construction of a model that satisfies the clauses

• Exchange information between theories through assignments
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Simplified McSAT control flow

SAT Core Theory

Decision Assignment

Boolean propagation Theory propagation

Figure 2: Simplified McSat Solver architecture
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Theory invariant

Given a set of assertions S, and a current assignment σ ∈ T → T .

σ is coherent iff
⋃

e 7→t∈σ e = t is satisfiable in the theory (for
instance, {x 7→ 1; y 7→ 2; x + y 7→ 0} is not coherent).

Assignments: the theory should ensure that for every sub-expression
e, there should exist a term t, such that, σ′ = σ ∪ {e 7→ t} is
coherent and every formula in Sσ′ is satisfiable (independently from
the others).
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McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0
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mSAT



mSAT: a modular SAT

• Derived from Atl-Ergo-Zero

• Very close to MiniSat

• Written in OCaml (˜5k loc)

• Provides functors to make SAT/SMT/McSat solvers

Joint work with Simon Cruanès
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Features

• 2-watched litterals, restarts, activity for decisions

• Push/pop operations

• Generic functors

• Proof/Model output
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Interface for terms

module type Formula = sig
type t (** The type of formulas *)

val neg : t -> t (** Negation of a formula *)
val norm : t -> t * bool
(** Normalizes a formula, and returns if it was

negated. *)

val hash : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
(** Usual functions *)

end
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Interface for theories (1)

module type Theory = sig

type assumption =
| Lit of formula
| Assign of term * term

type slice = {
start: int; length : int; get : int -> formula;
push : formula list -> proof -> unit;
propagate : formula -> int -> unit;

}
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Interface for theories (2)

type res =
| Sat of level
| Unsat of formula list * proof

val assume : slice -> res

val assign : term -> term
end
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Proof objects

type proof
and proof_node = {

conclusion : clause;
step : step;

}
and step =

| Hypothesis
| Lemma of lemma
| Resolution of proof * proof * atom

(** Lazy type for proof trees. *)

val expand : proof -> proof_node
(** Expands a proof into a proof_node *)
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Work to do

• Balance activity for literals and terms

• Work on conflict clauses

• Allow fine tuning of parameters

• Proof certificate output
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Start using mSAT!

• Available on opam

• Source code on github ( https://github.com/Gbury/mSAT )

• Used in Ziperposition, a superposition-based prover
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Archsat



Archsat

• Written in OCaml (˜12k loc)

• Uses the McSat functor from mSAT

• Prototype for experimenting
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A plugin for each task

• Plugin examples:
• Equality
• Uninterpreted functions/predicates
• Logical Connectives (∧,∨,⇒, . . .)
• Quantified formulas (∀,∃)

• Each plugin is independant

• Each plugin can register options on the command line

• They can be turned on/off through the command line
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Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]
• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A
• B

• → conflict !
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Congruence closure

Equality plugin:

• Uses Union-find

• Maintains coherence of assignments with regards to equality

Uninterpreted function plugin:

• Maintains coherence of assignmentw with regards to semantics
of functions, i.e that if x1, . . . , xn and y1, . . . , yn have the same
assignments, then f (x1, . . . , xn) and f (y1, . . . , yn) also have
the same assignment.
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Instanciation

• Introduce meta-variables for universally quantified variables

• If a model is found:
• Try and unify true predicates with false predicates
• Start the search again

• If Unsat, then problem solved
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Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]

• ¬[∀x , p(x)], [p(X )]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥
• p(X ) 7→ >
• Conflict !
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Finding instanciations

Different unification algorithms:

• Robinson unification

• Rigid E-unification

• Superposition with atomic clauses
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Further work

• Other instanciation strategies

• New theories (linear arithmetic, algebraic datatypes, . . . )

• Outputs proof certificates (dedukti, coq)
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