mSAT & Archsat : Experimenting with
McSat

Guillaume Bury
9 Feb, 2016

Deducteam, Inria; Université Paris Diderot

Guillaume Bury mSAT & Archsat : Experimenting with McSat 1/24

Introduction

e McSat: Model Constructing Sat
e Implementation as a functor : mSAT

e Instanciation with meaningful theories : Archsat

Guillaume Bury mSAT & Archsat : Experimenting with McSat 2/24

McSat

Simplified SMT control flow

SAT Core Theory

Decision (boolean)

Boolean propagation Theory propagation

Figure 1: Simplified SMT Solver architecture

Guillaume Bury mSAT & Archsat : Experimenting with McSat 3/24

Further integrate theory reasoning in the SAT solver

e Devan Jovanovic, Clark Barrett, and Leonardo de Moura. “The
Design and Implementation of the Model Constructing Satisfiability
Calculus”. In: 2013

e Devan Jovanovic and Leonardo de Moura. “A Model-Constructing
Satisfiability Calculus”. In: 2013

Guillaume Bury mSAT & Archsat : Experimenting with McSat 4/24

McSat principle

e Decisions on propositions but also on assignment for terms
e Construction of a model that satisfies the clauses

e Exchange information between theories through assignments

Guillaume Bury mSAT & Archsat : Experimenting with McSat 5/24

Simplified McSAT control flow

SAT Core Theory

Decision [«— | 1 Assignment

Boolean propagation [| Theory propagation

Figure 2: Simplified McSat Solver architecture

Guillaume Bury mSAT & Archsat : Experimenting with McSat 6/24

Theory invariant

Given a set of assertions S, and a current assignment o € T — T.

o is coherent iff | J,, ., € = t is satisfiable in the theory (for

instance, {x — 1,y — 2; x + y > 0} is not coherent).

Assignments: the theory should ensure that for every sub-expression
e, there should exist a term t, such that, 0’ = o U {e— t} is
coherent and every formula in So” is satisfiable (independently from
the others).

Guillaume Bury mSAT & Archsat : Experimenting with McSat 7/24

McSat - Dealing with equality

o [a=b]
o [b=(]
e [f(a) # f(c)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a— 0
o [b=(]
o [f(a) # f(c)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a— 0

. b= e b—0

o [f(a) # f(c)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a—0

e b— 0
*[b=d e c— 0
o [f(a) # f(c)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a—0

o [b= (] e b— 0
e c— 0

o [f(a) # f(c)] . 7(2) 150

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a— 0
e b— 0
.[b:C] e c— 0
e [f(a) # f(c)] . 7(2) 150
o f(c)—1

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

. 2= b] e a—0
o [b= (] e b— 0
e c— 0
o [f(a) # f(c)]
.) = (e of(a)v—>0
—[a=c],[f(a) = f(c)] .)1

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

o [a=b]

o [b=(]

o [f(a) # f(c)]

o —[a=c],[f(a) = f(c)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

o [a=b]

o [b=(]

o [f(a) # f(c)]

o —[a=c],[f(a) = f(c)]

e —[a=b],~[b=c],[a= (]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

McSat - Dealing with equality

e [a=b]

e [b=(]

o [F(a) # F(c)]

o ~[a=cl,[f(a) = f(c)]

e —[a=b],~[b=c],[a= (]

e Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8/24

mSAT

mSAT: a modular SAT

e Derived from Atl-Ergo-Zero

e Very close to MiniSat

e Written in OCaml ("5k loc)

e Provides functors to make SAT/SMT /McSat solvers

Joint work with Simon Cruanés

Guillaume Bury mSAT & Archsat : Experimenting with McSat 9/24

Features

2-watched litterals, restarts, activity for decisions

Push/pop operations

Generic functors

Proof/Model output

Guillaume Bury mSAT & Archsat : Experimenting with McSat 10 /24

Interface for terms

module type Formula = sig
type t (** The type of formulas *)

val neg : t -> t (*#* Negation of a formula *)
val norm : t -> t * bool
(** Normalizes a formula, and returns if it was

negated. *)
val hash : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int

(*¥* Usual functions *)

end

Guillaume Bury mSAT & Archsat : Experimenting with McSat 11 /24

Interface for theories (1)

module type Theory = sig

type assumption =
| Lit of formula

| Assign of term * term

type slice = {
start: int; length : int; get : int -> formula;
push : formula list -> proof -> unit;

propagate : formula -> int -> unit;

Guillaume Bury mSAT & Archsat : Experimenting with McSat 12 /24

Interface for theories (2)

type res =
| Sat of level
| Unsat of formula list * proof

val assume : slice -> res

val assign : term -> term

end

Guillaume Bury mSAT & Archsat : Experimenting with McSat 13 /24

Proof objects

type proof
and proof_node = {
conclusion : clause;
step : step;
b
and step =
| Hypothesis
| Lemma of lemma
| Resolution of proof * proof * atom

(*¥* Lazy type for proof trees. *)

val expand : proof -> proof_node

(** Expands a proof into a proof_node *)

Guillaume Bury mSAT & Archsat : Experimenting with McSat 14 /24

Balance activity for literals and terms

Work on conflict clauses

e Allow fine tuning of parameters

Proof certificate output

Guillaume Bury mSAT & Archsat : Experimenting with McSat 15 /24

Start using mSAT!

e Available on opam
e Source code on github (https://github.com/Gbury/mSAT)

e Used in Ziperposition, a superposition-based prover

Guillaume Bury mSAT & Archsat : Experimenting with McSat 16 /24

Archsat

e Written in OCaml ("12k loc)
e Uses the McSat functor from mSAT

e Prototype for experimenting

Guillaume Bury mSAT & Archsat : Experimenting with McSat 17 /24

A plugin for each task

Plugin examples:

Equality

e Uninterpreted functions/predicates
Logical Connectives (A, V,=,...)
Quantified formulas (V, 3)

Each plugin is independant

Each plugin can register options on the command line

They can be turned on/off through the command line

Guillaume Bury mSAT & Archsat : Experimenting with McSat 18 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors
(V,\,=..)

Clauses Assumed atoms

o —[(AAB)= A

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors

(V,\,=..)
Clauses Assumed atoms
o -[(AANB) = A e P=(ANB)=A

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors

(V,\,=..)
Clauses Assumed atoms
e [(ANB)= Al e P=(ANB)=A
e —[P],[AN B]
o [Pl -[A

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors

(V,A,=...)
Clauses Assumed atoms
e [(AAB) = Al e P=(AANB)= A
e —[P],[AN B] e Q=ANB
[] —\[P],—\[A] [] —|A

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors

(V,\,=..)

Clauses

Assumed atoms

S[(AAB) = Al
o —[P].[AAB]

e —[P],-[A]

o [QL[A]

(@], [B]

e« P=(ANB)= A
e Q=AAB
.—|A

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Lazy CNF conversion

e Add clauses while solving

e Distinguish clausal calculus (SAT) from logic connectors

(V,\,=..)

Clauses

Assumed atoms

S[(AAB) = Al
o —[P].[AAB]

e —[P],-[A]

o [QL[A]

(@], [B]

e P=(AANB)= A
e Q=AAB

e A

e B

e — conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 /24

Congruence closure

Equality plugin:
e Uses Union-find
e Maintains coherence of assignments with regards to equality

Uninterpreted function plugin:

e Maintains coherence of assignmentw with regards to semantics
of functions, i.e that if xq,...,x, and yi, ..., y, have the same
assignments, then f(xi,...,x,) and f(y1,...,yn) also have
the same assignment.

Guillaume Bury mSAT & Archsat : Experimenting with McSat 20 /24

Instanciation

e Introduce meta-variables for universally quantified variables
e If a model is found:

e Try and unify true predicates with false predicates
e Start the search again

e If Unsat, then problem solved

Guillaume Bury mSAT & Archsat : Experimenting with McSat 21 /24

Isntanciation - example

o [¥x, p(x)]
e ~[p(a)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 /24

Isntanciation - example

o [¥x, p(x)]
e ~[p(a)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 /24

Isntanciation - example

o [Vx, p(x)]
e —[p(a)]
e —[Vx, p(x)], [p(X)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 /24

Isntanciation - example

o [Vx, p(x)]
e —[p(a)]
e —[Vx, p(x)], [p(X)]

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 /24

Isntanciation - example

[Vx, p(x)]

—[p(a)]

=[x, p(x)], [P(X)]
=[Vx, p(x)], [p(a)]

e Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 /24

Finding instanciations

Different unification algorithms:

e Robinson unification
e Rigid E-unification

e Superposition with atomic clauses

Guillaume Bury mSAT & Archsat : Experimenting with McSat 23 /24

e Other instanciation strategies
e New theories (linear arithmetic, algebraic datatypes, .. .)

e Outputs proof certificates (dedukti, coq)

Guillaume Bury mSAT & Archsat : Experimenting with McSat 24 /24

	McSat
	mSAT
	Archsat
	Ideas
	Plugins
	Instanciation

