
mSAT & Archsat : Experimenting with
McSat

Guillaume Bury

9 Feb, 2016

Deducteam, Inria; Université Paris Diderot

Guillaume Bury mSAT & Archsat : Experimenting with McSat 1 / 24

Introduction

• McSat: Model Constructing Sat

• Implementation as a functor : mSAT

• Instanciation with meaningful theories : Archsat

Guillaume Bury mSAT & Archsat : Experimenting with McSat 2 / 24

McSat

Simplified SMT control flow

SAT Core Theory

Decision (boolean)

Boolean propagation Theory propagation

Figure 1: Simplified SMT Solver architecture

Guillaume Bury mSAT & Archsat : Experimenting with McSat 3 / 24

Motivation

Further integrate theory reasoning in the SAT solver

• Devan Jovanovic, Clark Barrett, and Leonardo de Moura. “The
Design and Implementation of the Model Constructing Satisfiability
Calculus”. In: 2013

• Devan Jovanovic and Leonardo de Moura. “A Model-Constructing
Satisfiability Calculus”. In: 2013

Guillaume Bury mSAT & Archsat : Experimenting with McSat 4 / 24

McSat principle

• Decisions on propositions but also on assignment for terms

• Construction of a model that satisfies the clauses

• Exchange information between theories through assignments

Guillaume Bury mSAT & Archsat : Experimenting with McSat 5 / 24

Simplified McSAT control flow

SAT Core Theory

Decision Assignment

Boolean propagation Theory propagation

Figure 2: Simplified McSat Solver architecture

Guillaume Bury mSAT & Archsat : Experimenting with McSat 6 / 24

Theory invariant

Given a set of assertions S, and a current assignment σ ∈ T → T .

σ is coherent iff
⋃

e 7→t∈σ e = t is satisfiable in the theory (for
instance, {x 7→ 1; y 7→ 2; x + y 7→ 0} is not coherent).

Assignments: the theory should ensure that for every sub-expression
e, there should exist a term t, such that, σ′ = σ ∪ {e 7→ t} is
coherent and every formula in Sσ′ is satisfiable (independently from
the others).

Guillaume Bury mSAT & Archsat : Experimenting with McSat 7 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

McSat - Dealing with equality

• [a = b]

• [b = c]

• [f (a) 6= f (c)]

• ¬[a = c], [f (a) = f (c)]

• ¬[a = b],¬[b = c], [a = c]

• a 7→ 0

• b 7→ 0

• c 7→ 0

• f (a) 7→ 0

• f (c) 7→ 1

• Conflict at level 0

Guillaume Bury mSAT & Archsat : Experimenting with McSat 8 / 24

mSAT

mSAT: a modular SAT

• Derived from Atl-Ergo-Zero

• Very close to MiniSat

• Written in OCaml (˜5k loc)

• Provides functors to make SAT/SMT/McSat solvers

Joint work with Simon Cruanès

Guillaume Bury mSAT & Archsat : Experimenting with McSat 9 / 24

Features

• 2-watched litterals, restarts, activity for decisions

• Push/pop operations

• Generic functors

• Proof/Model output

Guillaume Bury mSAT & Archsat : Experimenting with McSat 10 / 24

Interface for terms

module type Formula = sig
type t (** The type of formulas *)

val neg : t -> t (** Negation of a formula *)
val norm : t -> t * bool
(** Normalizes a formula, and returns if it was

negated. *)

val hash : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
(** Usual functions *)

end

Guillaume Bury mSAT & Archsat : Experimenting with McSat 11 / 24

Interface for theories (1)

module type Theory = sig

type assumption =
| Lit of formula
| Assign of term * term

type slice = {
start: int; length : int; get : int -> formula;
push : formula list -> proof -> unit;
propagate : formula -> int -> unit;

}

Guillaume Bury mSAT & Archsat : Experimenting with McSat 12 / 24

Interface for theories (2)

type res =
| Sat of level
| Unsat of formula list * proof

val assume : slice -> res

val assign : term -> term
end

Guillaume Bury mSAT & Archsat : Experimenting with McSat 13 / 24

Proof objects

type proof
and proof_node = {

conclusion : clause;
step : step;

}
and step =

| Hypothesis
| Lemma of lemma
| Resolution of proof * proof * atom

(** Lazy type for proof trees. *)

val expand : proof -> proof_node
(** Expands a proof into a proof_node *)

Guillaume Bury mSAT & Archsat : Experimenting with McSat 14 / 24

Work to do

• Balance activity for literals and terms

• Work on conflict clauses

• Allow fine tuning of parameters

• Proof certificate output

Guillaume Bury mSAT & Archsat : Experimenting with McSat 15 / 24

Start using mSAT!

• Available on opam

• Source code on github (https://github.com/Gbury/mSAT)

• Used in Ziperposition, a superposition-based prover

Guillaume Bury mSAT & Archsat : Experimenting with McSat 16 / 24

Archsat

Archsat

• Written in OCaml (˜12k loc)

• Uses the McSat functor from mSAT

• Prototype for experimenting

Guillaume Bury mSAT & Archsat : Experimenting with McSat 17 / 24

A plugin for each task

• Plugin examples:
• Equality
• Uninterpreted functions/predicates
• Logical Connectives (∧,∨,⇒, . . .)
• Quantified formulas (∀,∃)

• Each plugin is independant

• Each plugin can register options on the command line

• They can be turned on/off through the command line

Guillaume Bury mSAT & Archsat : Experimenting with McSat 18 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]
• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A
• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]
• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A
• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]

• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A
• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]

• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A

• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]
• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A

• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Lazy CNF conversion

• Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors
(∨,∧,⇒ . . .)

Clauses Assumed atoms

• ¬[(A ∧ B)⇒ A]

• ¬[P], [A ∧ B]

• ¬[P],¬[A]
• ¬[Q], [A]

• ¬[Q], [B]

• P ≡ (A ∧ B)⇒ A

• Q ≡ A ∧ B

• ¬A
• B

• → conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 19 / 24

Congruence closure

Equality plugin:

• Uses Union-find

• Maintains coherence of assignments with regards to equality

Uninterpreted function plugin:

• Maintains coherence of assignmentw with regards to semantics
of functions, i.e that if x1, . . . , xn and y1, . . . , yn have the same
assignments, then f (x1, . . . , xn) and f (y1, . . . , yn) also have
the same assignment.

Guillaume Bury mSAT & Archsat : Experimenting with McSat 20 / 24

Instanciation

• Introduce meta-variables for universally quantified variables

• If a model is found:
• Try and unify true predicates with false predicates
• Start the search again

• If Unsat, then problem solved

Guillaume Bury mSAT & Archsat : Experimenting with McSat 21 / 24

Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]

• ¬[∀x , p(x)], [p(X)]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥
• p(X) 7→ >
• Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 / 24

Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]

• ¬[∀x , p(x)], [p(X)]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥

• p(X) 7→ >
• Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 / 24

Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]
• ¬[∀x , p(x)], [p(X)]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥

• p(X) 7→ >
• Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 / 24

Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]
• ¬[∀x , p(x)], [p(X)]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥
• p(X) 7→ >

• Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 / 24

Isntanciation - example

• [∀x , p(x)]
• ¬[p(a)]
• ¬[∀x , p(x)], [p(X)]

• ¬[∀x , p(x)], [p(a)]

• p(a) 7→ ⊥
• p(X) 7→ >

• Conflict !

Guillaume Bury mSAT & Archsat : Experimenting with McSat 22 / 24

Finding instanciations

Different unification algorithms:

• Robinson unification

• Rigid E-unification

• Superposition with atomic clauses

Guillaume Bury mSAT & Archsat : Experimenting with McSat 23 / 24

Further work

• Other instanciation strategies

• New theories (linear arithmetic, algebraic datatypes, . . .)

• Outputs proof certificates (dedukti, coq)

Guillaume Bury mSAT & Archsat : Experimenting with McSat 24 / 24

	McSat
	mSAT
	Archsat
	Ideas
	Plugins
	Instanciation

