# Proving your proofs

Guillaume Bury September 22, 2017

Université Paris Diderot; Inria; LSV, ENS Cachan

- Automated theorem proving
  - Usually blackboxes
  - Yes/No answer
  - Cannot verify the answer
  - Very complex algorithms and heuristics  $\rightarrow$  potentially some bugs
- Proof certificates
  - Easily verifiable
  - Very detailed
  - Small trusted core which does simple verifications
  - Tedious to do by hand

Sat Solving and Resolution Proofs The Sat Algorithm Some examples Sat Proofs

SMT solving and proofs for first-order

SMT Algorithm

SMT Proofs

Some examples

# Sat Solving and Resolution Proofs



Figure 1: Simplified SAT Solver architecture

- Maintain a partial propositional model
- Propagation
  - If there exists a clause C = a ∨ c<sub>1</sub> ∨ ... ∨ c<sub>n</sub>, where every
     c<sub>i</sub> → ⊥ in the current partial model, then add a → C ⊤ to the model
  - Record the clause C as the **reason** for the propagation of a
- Decision
  - When no propagation is possible
  - Choose an unassigned litteral a
  - Add  $a \mapsto \top$  to the model

- When there is a clause  $C = c_1 \lor \ldots \lor c_n$ , where every  $c_i \mapsto \bot$ , begin analyzing with current clause C
- Walk back the propagations/decisions from most recent
- If the currently looked at atom is:
  - Not part of the current clause, continue
  - part of the current clause, and propagated by a clause *D*, perform a resolution between the current clause and *D*:

$$\frac{C \lor p \qquad \neg p \lor D}{C \lor D}$$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- New clause :  $C_3 = \neg p(a)$ , backtrack to before decision.

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- New clause :  $C_3 = \neg p(a)$ , backtrack to before decision.
- Propagation:  $p(a) \rightsquigarrow_{C_3} \bot$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- New clause :  $C_3 = \neg p(a)$ , backtrack to before decision.
- Propagation:  $p(a) \rightsquigarrow_{C_3} \bot$
- Decision:  $p(b) \mapsto \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- New clause :  $C_3 = \neg p(a)$ , backtrack to before decision.
- Propagation:  $p(a) \rightsquigarrow_{C_3} \bot$
- Decision:  $p(b) \mapsto \top$
- Propagation (nothing to do)

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision:  $p(a) \mapsto \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- New clause :  $C_3 = \neg p(a)$ , backtrack to before decision.
- Propagation:  $p(a) \rightsquigarrow_{C_3} \bot$
- Decision:  $p(b) \mapsto \top$
- Propagation (nothing to do)
- Model Found !

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- Resolution between  $T_1 = \neg p(a)$  and  $C_0 = p(a)$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- Resolution between  $T_1 = \neg p(a)$  and  $C_0 = p(a)$
- Empty clause  $C_4 = \bot$  reached

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation:  $p(a) \mapsto_{C_0} \top$
- Propagation in  $C_1 = \neg p(a) \lor p(b)$ :  $p(b) \rightsquigarrow_{C_1} \top$
- Conflict:  $C_2 = \neg p(a) \lor \neg p(b)$  not satisfied
- Resolution between  $C_2 = \neg p(a) \lor \neg p(b)$  and  $C_1 = \neg p(a) \lor p(b)$
- Resolution between  $T_1 = \neg p(a)$  and  $C_0 = p(a)$
- Empty clause  $C_4 = \bot$  reached
- Input problem is unsatisfiable

# SAT Solving - proofs



# Resolution proofs in Coq

- Disjunctions are not easy to work with
  - Ordering matters
  - Need to manually apply commutativity and associativty lemmas
- Solution: use a weak form of clauses, as implications:

$$c_1 \lor \ldots \lor c_n \mapsto \neg c_1 \to \ldots \to \neg c_n \to \bot$$

• Resolution on weak clauses:

$$\mathsf{Res}(c_1 \lor \ldots \lor \neg p \lor \ldots \lor c_n, \\ d_1 \lor \ldots \lor p \lor \ldots \lor d_m) \mapsto \\ \mathsf{Res}(\neg c_1 \to \ldots \to \neg \neg p \to \ldots \to c_n \to \bot, \\ \neg d_1 \to \ldots \to \neg p \to \ldots \to d_m \to \bot)$$

# SMT solving and proofs for first-order



#### Figure 2: Simplified SAT/SMT Solver architecture



Figure 2: Simplified SAT/SMT Solver architecture

- Leafs can be either:
  - A Hypothesis
  - A Theory lemma
- A theory lemma is a tautology in the theory, for instance:
  - Equality reflexivity: Lemma = (a = a)
  - Equality transitivty: Lemma =  $\neg(a = b) \lor \neg(b = c) \lor (a = c)$
  - Equality substitution: Lemma =  $\neg(a = b) \lor (f(a) = f(b))$



### • Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors  $(\vee,\wedge,\Rightarrow\ldots)$ 

| Clauses                             | Assumed atoms |
|-------------------------------------|---------------|
| • $\neg[(A \land B) \Rightarrow A]$ |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |

### • Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors  $(\vee,\wedge,\Rightarrow\ldots)$ 

| Clauses                             | Assumed atoms                                       |
|-------------------------------------|-----------------------------------------------------|
| • $\neg[(A \land B) \Rightarrow A]$ | • $P \equiv (A \land B) \Rightarrow A \mapsto \bot$ |
|                                     |                                                     |
|                                     |                                                     |
|                                     |                                                     |
|                                     |                                                     |

### • Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors  $(\lor,\land,\Rightarrow\ldots)$ 

| Clauses                             | Assumed atoms                                       |
|-------------------------------------|-----------------------------------------------------|
| • $\neg[(A \land B) \Rightarrow A]$ | • $P \equiv (A \land B) \Rightarrow A \mapsto \bot$ |
| • $[P], [A \land B]$                |                                                     |
| ● [ <i>P</i> ], ¬[ <i>A</i> ]       |                                                     |
|                                     |                                                     |
|                                     |                                                     |

- Add clauses while solving
- Distinguish clausal calculus (SAT) from logic connectors  $(\lor,\land,\Rightarrow\ldots)$

| Clauses                             | Assumed atoms                                       |
|-------------------------------------|-----------------------------------------------------|
| • $\neg[(A \land B) \Rightarrow A]$ | • $P \equiv (A \land B) \Rightarrow A \mapsto \bot$ |
| • $[P], [A \land B]$                | • $Q \equiv A \land B \mapsto \top$                 |
| • $[P], \neg[A]$                    | • $A \mapsto \bot$                                  |
|                                     |                                                     |
|                                     |                                                     |

- Add clauses while solving
- Distinguish clausal calculus (SAT) from logic connectors  $(\lor,\land,\Rightarrow\ldots)$

| Clauses                             | Assumed atoms                                       |
|-------------------------------------|-----------------------------------------------------|
| • $\neg[(A \land B) \Rightarrow A]$ | • $P \equiv (A \land B) \Rightarrow A \mapsto \bot$ |
| • $[P], [A \land B]$                | • $Q \equiv A \land B \mapsto \top$                 |
| • $[P], \neg[A]$                    | • $A \mapsto \bot$                                  |
| <ul> <li>¬[Q], [A]</li> </ul>       |                                                     |
| <ul> <li>¬[Q], [B]</li> </ul>       |                                                     |

### • Add clauses while solving

• Distinguish clausal calculus (SAT) from logic connectors  $(\lor,\land,\Rightarrow\ldots)$ 

| Clauses                             | Assumed atoms                                       |
|-------------------------------------|-----------------------------------------------------|
| • $\neg[(A \land B) \Rightarrow A]$ | • $P \equiv (A \land B) \Rightarrow A \mapsto \bot$ |
| • $[P], [A \land B]$                | • $Q \equiv A \land B \mapsto \top$                 |
| • $[P], \neg[A]$                    | • $A \mapsto \bot$                                  |
| <ul> <li>¬[Q], [A]</li> </ul>       | • $B \mapsto \top$                                  |
| <ul> <li>¬[Q], [B]</li> </ul>       | • $\rightarrow$ conflict !                          |

# Lazy CNF conversion - proof graph



### Demo Coq

- Proper naming and escaping
- Keep information on formula order and parentheses:
  - equality:  $a = b \not\equiv b = a$
  - logical connectives:  $p \land (q \land r) \not\equiv (p \land q) \land r$
- First-order implicit assumptions vs actual hypotheses

- Fully checkable proof output
- Increased trust in results
- Future work:
  - Extend to other proof assistants
  - Faster proofs