Implementing Rigid E-unification

Michael Franssen (m.franssen@tue.nl)
Eindhoven University of Technology,
Dept. of Mathematics and Computer Science,
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Abstract

Rigid E-unification problems arise naturally in automated theorem
provers that deal with equality. While there is a lot of theory about rigid
E-unification, only few implementations exist. Since the problem is NP-
complete, direct implementations of the theory are slow. In this paper
we discuss how to implement a rigid E-unifier, focussing on efficiency.
First, we introduce an efficient representation of unifying substitutions
to implement a regular Robinson unification algorithm. Next, we discuss
the algorithm to compute rigid E-unifiers as proposed by Degtyarev et
al. [4] and we discuss how to solve the symbolic ordering constraint as
proposed by Comon [1] and Nieuwenhuis [10]. Finally, we discuss how
rigid E-unification can be implemented efficiently. However, the worst
case is still exponential.

1 Introduction

Rigid E-unification problems arise naturally in automated theorem provers for
first-order logic. The theorem prover transforms a first-order formula into a less
complicated form, removing existential quantifiers by skolemization. Universal
quantifiers are usually instantiated (repeatedly). Since it is hard to come up
with good instances, one often uses a fresh variable to instantiate the universally
quantified formula. A useful value for the variable is then found by unification
later on. This variable is called a rigid variable, since it can be instantiated only
once during the construction of the proof.

If the logic of the theorem prover allows for equations, a typical problem that
has to be solved is s = t1,...,s, = t, = s = t: does equality s = ¢ hold, given
the equalities s1 = t1,...,$, = t,. Shostak [12] proposed a uniform treatment
for this problem, but this only works for ground formulas without free variables.
However, as stated above, the formulas we consider may contain rigid variables.

Therefore, the theorem prover should be able to compute a rigid E-unifier to
solve these kinds of problems. A rigid E-unifier is a substitution 6 from rigid

variables to ground formulas, such that 6(s; = t1),...0(s, = t,) F 0(s = ¢).
The rigid E-unification problem is to compute such a 8 for sy = t1,...,s, =
t, Fs=t.

In [4] a complete tableau calculus is proposed using rigid E-unification. Degt-
yarev et al. present not only the tableau calculus, but also a BSE calculus to
compute rigid E-unifiers. Their calculus uses solutions to rigid E-unification
problems to close individual tableau leaves and combines those to compute a
closure for the entire tableau. A more direct approach would be to try to com-
pute the solution to a simultaneous rigid E-unification problem as proposed
by [7], but this proved to be undecidable [3].

The BSE calculus used by Degtyarev et al. uses a symbolic ordering constraint
that has to be satisfiable for the solution to be correct. Although they ’assume
that there is an effective procedure for checking constraint satisfiability’, this
turns out to be a complicated problem in itself and is NP-complete.

Comon [1] proposed to use the lexicographical path ordering to check such
constraints. For this, the original constraint is rewritten by — g into a set of
solved forms. Each solved form then gives rise to an (exponential) number of
so called simple systems. The original constraint is satisfiable if at least one of
the simple systems is. Deciding satisfiability of a simple systems is, as the name
suggests, simple (it can be done in linear time).

Nieuwenhuis [10] simplified the decidability of simple systems, by loosening their
definition. Even though his method still uses an exponential number of simple
systems, one has to make less case distinctions to decide on satisfiability.

Even though all this theory is available only few implementations exists of first-
order theorem provers that allow equalities. Two examples are Spass [13] and
Prins [8]. Spass is based on the connection or resolution method and uses other
ways than rigid E-unification to deal with equalities, which are beyond the scope
of this paper. Prins is based on semantic tableaux, but uses completion based
methods to deal with equalities. The advantage of using rigid E-unification to
handle equalities is that it is easier to integrate in existing theorem provers, since
it does not change the rules of the prover itself. An efficient implementation is
to our knowledge not described in literature so far.

In this paper, we follow the lines of Degtyarev, Comon and Nieuwenhuis to ac-
tually implement a rigid E-unifier and provide guidelines to do this as efficiently
as possible in the context of an NP-complete problem.

Section 2 of this paper describes the concepts and definitions we need. In Sec-
tion 3 we discuss an efficient implementation of Robinson unification, to intro-
duce a simple, yet compact, representation of unifying substitutions. Section 4
describes the theory of solving rigid E-unification problems: Subsection 4.1 de-
scribes the BSE calculus found in [4], Subsection 4.2 describes the rewrite system
—p to compute solved forms as defined in [1] and Subsection 4.3 describes how
to compute simple systems from these solved forms and how to decide their sat-

isfiability following [10]. In Section 5 we implement a rigid E-unifier following
the same three steps, providing details to gain efficiency for each step. Finally,
the results are discussed in Section 6.

2 Preliminaries

Definition 1 (formulas) The grammar for formulas F is given by

Fu=T|L|FAF|FVF|T=T
T = F(TH|V

Where V is a set of variables and F is a set of function symbols. Function
symbols of arity 0 are called constants. The semantics of = is equality in the
model. That is, if in a model |= s =t holds, s and t are mapped to the same
value. From this it also follows that = represents Leibniz equality, meaning that
if s =t holds, all occurrences of s in any term T may be replaced by t without
changing the semantics of T.

FV(P) denotes the free variables of a (set of) formula(s) P as usual. A substi-
tution 6 : V — T is a mapping from variables to terms.

Definition 2 (Lexicographical Path Ordering LPO) Let s~f(s1,...,5p)
and t~g(t1,...,t,) be two terms. Let > be an arbitrary ordering of the func-
tion symbols in F (called the precedence ordering). Then s>t iff one of the
following holds:

1. (Fi:1<i<m:s;-t)

2. f>rpgn(Vji:1<j<m:s~t))

3 frogN(Fg:1<j<n:(Vi:1<i<j:s;,=1)
/\Sj>-tj
ANVE:j<k<n:s-ty))

The LPO is total on ground terms. We use ~ to denote syntactic equality of
terms.

Definition 3 (Most general unifier) Let s and t be terms. A unifier 0 is
a substitution such that 6(s)~0(t), where ~ denotes syntactical equality. 6 is
called a most general unifier if for any unifier 8’ there exists a substitution 6"
such that 0/ = 6" o 0. The most general unifier is unique.

Definition 4 (Rigid E-unification problem) Let s1 = t1,...,8, = t, be a
list of equations and let s =t be a single goal equation. The rigid E-unification

problem denoted by s1 = t1,...,8, = t, = s =1 is stated as follows: Is there a
substitution 0, such that 0(s) = 0(t) holds in all models in which all of 0(s1) =
0(t1),...,0(sn) = 0(t,) hold? (i.e. is there a substitution 0 such that 6(sy =
ty Ao NSy = t, = s = t) is a tautology?). This problem is shown to be
NP-complete [6].

3 Efficient Robinson unification

In this section we discuss an efficient algorithm to compute most general unifiers
based on the algorithm by Robinson [11]. Although this algorithm is not directly
used for rigid E-unification, its discussion is useful for several purposes: (1) it
will be used to demonstrate the techniques we will use later on. (2) regular
unification is embedded in the computation of solved forms needed for rigid
E-unification. (3) Regular unification is useful in its own right.

A unification algorithm computes the most general unifier for two expressions
e1 and ey. That is, it computes a substitution 6, such that 6(e;)~0(es) if it
exists. The most general unifier 6 of e; and ey also has the property that any
other unifier 6’ can be written as 6" 06 for certain §”. An algorithm to compute
most general unifiers for first-order formulas was first described by Robinson
in [11].

In [9], Martelli and Montanari describe an efficient unification algorithm. Their
algorithm, however, requires somewhat complicated data-structures and re-
quires the tree-representation of formulas to be inspected in a specific order.
In this section, we will construct an efficient unification algorithm that uses
no complicated data-structures and that does not impose any specific order in
which the tree-representation of formulas has to be inspected. This is impor-
tant, since in an automated theorem prover most unification attempts will fail
and most datastructures that are constructed will be discarded.

We start with a straightforward implementation of a basic Robinson unification
algorithm:

function unify(S et of T=T7):V - T ||
if S=0 — return id
else
s=t:€ S,
S:=S\{s=t}
ifseV —
if s=t — return unify(S)
elseif s € FV(t) — abort // occurs check
else return (s — t)ounify((s — t)(S5))
fi
elseif t € V — return unify(S U {t = s})
else
let f(s1,...,8n) =8, 9(t1, .. tm) = L
if f=g — return unify(SU{s; =t¢;|1<i<n})
else abort // function mismatch
fi
fi
fi

Il

By let f(s1,...,8,) :: s we mean that s must have the form f(sq,...,s,) and
that we will use f and s; till s,, to denote its components.

Correctness and termination of this algorithm follow from the observation that
the set of most general unifiers of S does never change under application of the

algorithm and that the overall complexity of the formulas in S decreases!.

Note that every substitution in S is followed by the incorporation of the cor-
responding mapping in 6. Hence, instead of S, we can maintain a set S’ of
equations and maintain invariant that 6(S’) = S. We then get the following
version of the unification algorithm:

Ithe formula s — t is considered less complex than ¢ — s in the case where s € V and
tg V.

function unify(§ : V — T;5 set of T=T):V =T ||
if =0 — return 6
else
s=t:e S
S =5 \{s=1t}
ifg(s) eV —
if 0(s) = 6(t) — return unify(d,5")
elseif 0(s) € FV(0(t)) — abort // occurs check
else return unify([0(s) — 6(¢)] 0 6, 5")
fi
elseif §(t) € V — return unify(6,S" U {t = s})
else
let f(0(s1),...,0(sn)) 1 0(s),9(0(t1),...,0(tm)) = 0(t);
if f=¢g — return unify(9,5" U {s; =1t; |1 <i<n})
else abort // function mismatch
fi
fi
fi

Il

We will show how efficiency can be increased by choosing appropriate represen-
tations for S and 6.

The substitution € can be represented as a list
0 =< [(El '—>t1]7...,[.’bn th] >
of one-point mappings. 6 is then computed 6y, where

0; = [Tiv1 = Oip1(tiz1)] 0.0 [y = On(ts)]
0, =id

The substitution [z +— 0(t)] o 6 is then represented by < [z — ¢], 8 >, where 6§’
is the list representation of §. That is, instead of changing a substitution 6, we
simply prepend [z —] to a list representation 6, where x and ¢ are (sub)terms
that are already available.

Note that the x; in 6" are unique. We define 6'(z;) = ¢t; for 1 < i < n.

During the computation of the unifier, it is necessary to compare the first sym-
bols of terms, i.e. the variable if the terms are variables and the function symbol
if the terms are function applications. Whatever the representation of our uni-
fier 6 is, we must be able to compute the first symbol of 6(s) for a term s.
Therefore, we use the following lemma.

Lemma 5 Let 0/ =< [x1 — t1],..., [zn — tn] > be a list of one-point mappings
and let 6 be the corresponding substitution as defined above. Also assume that
x; does mot occur in 0;(t;) for any i, and that all x; are different. Let v be a
variable, such that v = x; for certain i. Then 0(v) = 0(t;).

Proof:
0(v)
= {definition of 0}
([z1 = 01(t1)] o ... 0 [zn = On(tn)])(v)
= {U¢{$i+17...,$n}}
([z1 = 01(t1)] o... 0 [z = 0:(t:)]) (v)
= {v = wx;; definition of o}
([z1 = 01(t1)] o ... 0 [zi—1 = Oi—1(ti—1)])(0:(ts))
= {a; does not occur in 6;(¢;)}
([z1 = 01(t1)] o ... o [x; > 0:(t:)])(0:(L:))
= {definition of o and 6;}
0(t;)
O

This lemma allows us to (repeatedly) apply a one-point mapping to the terms
s and ¢ in order to compute a partial unfolding of 0(s) and 6(t). Application
will be repeated until a non-variable is encountered or until the full image is
computed. This will eliminate most terms of the form 6(x) in the algorithm,
which now becomes:

function unify (0’ :list of V +— T;5" :set of T =T) :list of V — T' ||
if =0 — return ¢
else
s=t:€ 9
S =8 \{s=t}
while (Je.[s — ¢] € 0') do s :=6'(s) od
while (Fe.[t — €] € ') do ¢t :=0'(¢) od
ifseV —
if s=t — return unify(¢’,S")
elseif s € FV(6(t)) — abort // occurs check
else return unify(< [s — ¢],0" >,5")
fi
elseif t € V — return unify(¢’, 5" U {t = s})
else
let f(0'(s1),...,0'(sn)) :: 8, 9(0'(t1),...,0 (tm)) = t;
if f=9g — return unify(¢’,5'U{s; =t; |1 <i<n})
else abort // function mismatch
fi
fi
fi

I

The only occurrence of # in this version is in the guard s € FV(6(t)). Since we
do not want a direct representation of 6, but represent 6 by 6, we will check for
occurrences of s in 6(t) with the following algorithm:

function occursCheck(d' :list of V — T; v:V; s:T) : bool ||
while (e.[s—e] €0') — s:=6(s);
ifseV — returns=v
else
let f(0'(s1),...,0(sn)) = s;
return (\/i:1 < i <n :occursCheck(d’, v, s;))
fi
Il

Finally, we can note that the only reason the set S’ is maintained is to pick one
element from it and alter ' accordingly. If we pick this element at the time of
the recursive call, we can eliminate the need for S’ altogether, yielding our final
algorithm for regular unification:

function unify (8’ :list of V +— T;s,¢:T) :list of V — T ||
while (Je.[s — ¢e] € ') do s :=6'(s) od
while (Fe.[t — €] € 8') do ¢t :=0'(¢) od
ifseV —
ifs=t — return ¢’
elseif occursCheck(’, s,t) — abort // occurs check
else return < [s+—t],6 >

fi
elseif t € V — return unify(¢',t, s)
else
let f(0'(s1)y...,0(8n)) 8,90 (t1),...,0'(tm)) = t;
iff=g —
foreach i : 1 <i <n do # :=unify(¢', s;,t;) od
return 6’
else abort // function mismatch
fi
fi

Il

Our final algorithm does not impose any order in which subterms of s and ¢ are
unified. Also, the only required data structure is a list of pairs, in which the first
element of each pair refers to a variable and the second element refers to the
sub-term that should be substituted for this variable. These sub-terms already
exist within the original terms s and ¢ to be unified, so the data structure is a list
of pairs of pointers. Also, the length of this list cannot exceed the number of free
variables occurring in s and ¢t. Such a data structure requires very little memory
and can be manipulated efficiently. Especially in a context where most of the
unification attempts will fail (e.g. in an automated theorem prover) this has the
advantage that no data has to be copied and no time is wasted in substitutions
to represent partial unifiers that will fail during a later stage of construction.

Operationally the final algorithm can be understood as a synchronous tree
traversal of the terms s and t to be unified. Whenever a variable x is en-

countered in, for instance, s, one checks if a substitute for z exists in 6’. If so,
then the synchronous tree traversal continues with the substitute for x. If not,
an occurs check is performed and ¢’ is extended to include the mapping = — e,
where e is the corresponding sub term in ¢.

4 Solving rigid equation problems

In [4] a calculus BSE is used to rewrite the goal equation into a trivial form.
For each rewrite step, conjuncts are added to a constraint, which has to be sat-
isfiable. About computing the satisfiability of this constraint they state: ”We
assume that there is an effective procedure for checking constraint satisfiability”
and they provide a reference to (among others) [10]. However, when imple-
menting Degtyarev’s calculus, most of the work involves checking constraint
satisfiability. Also, interactions and optimizations that involve both the BSE
calculus and the constraint checking are not addressed.

The approach to solve rigid equation problems used in this paper can be sum-
marized as follows:

e Use the calculus BSE to rewrite the goal into a trivial form (i.e. s = s),
provided that the constraint generated by the rules is satisfiable. The BSE
calculus requires the Leibniz property of the semantics of =.

e In order to check satisfiability of the constraint, first rewrite it into a
number of solved forms.

e To check satisfiability of a solved form, generate the corresponding simple
systems and check if a satisfiable simple system exists.

In the following subsections, we will briefly describe each of these steps.

4.1 The BSE calculus

The rigid equation is rewritten according to the calculus BSE, given in Fig-
ure 1. These rules are used to rewrite the goal equation into a trivial form (i.e.
e~e). However, in order to guarantee progress during rewriting, we only want
to replace bigger terms by smaller ones, according to some ordering (e.g. the
lexicographical path ordering (Ipo)). Such an ordering is total on ground terms,
but since the terms also contain rigid variables, it is not always clear which side
of the equation is the bigger term. Therefore, a constraint C is maintained, to
which conjuncts are added that claim that rewriting takes places in the right
direction. A constraint C is called satisfiable if there exists a substitution for
the rigid variables such that C holds. Hence, if C is satisfiable all rewritings that
have been applied result in smaller terms. Therefore, after applying each BSE
rule, one has to check satisfiability of the constraint.

Eu{l=rsp|=t}Fve-C

s EU{l=rs[r]=t}Fve-CAl=r Asp]=t Al~p pEV, sl #t
Eu{l=r}tkyspl=t-C

s U= Fy s = CA L st Aaiep P EY

er Ebys=t-C s21

Fvs=s-CAs~t

Figure 1: The calculus BSE: left rigid basic superposition (Irbs),
right rigid basic superposition (rrbs) and equality resolution
(er). A rule may only be applied if the resulting constraint
is satisfiable.

4.2 Solved forms

A constraint imposes an ordering of terms, which are not necessarily ground.
Hence, indirectly, this ordering puts some restrictions on the values that may
be assigned to the rigid variables contained in these terms.

The rewrite system —pg defined in Figures 2 and 3 (taken from [1]) is used
to make the restrictions on the rigid variables explicit. That is, based on the
definition of LPO, the restrictions are rewritten such that they explicitly limit
the possible values for rigid variables. The normal form of this system is either
T (if the constraint trivially holds), L (if the constraint is trivially inconsistent),
or it is a disjunction of constraints of the form:

TI~E N oo ANy AU =V1 A oo A Uy =V,

Equality rules:

(D1) f(vi,..yvn)2f(ut, ..., un) =R V1=UL A ... A Un™Up
(C1) f(vi,...,vn)~g(u1,. .., um) —r L
iff#£g

(R) xzxtAP —ga~tAPlr:=t
if x € FV(P)\ FV(t), P is a conjunction of (in)equations
andt €V =teFV(P).

(O1) s~t[s] =r L
if s # t[s]

Figure 2: The rules of — g that deal with equality. Note that
these are equal to the rules of regular Robinson unification.

10

Inequality rules:

(DQ) f(vla"'7Un)>'g(u17"'7um) —R
for, oo on)=ur Ao A f(or, .o, on)>=Uum
if f>_7:g.
(D3) f(v1,...,vn)>=g(u1,...,um) —r
viZg(Ut, .o Um) VooV upmg(ur, .., Um)
ifg>-‘7:f.
(D4) f(U17...7’Un)>-f(U17...,un) —R
vimf(ut, .y Un) Voo Vop = f(ut, ..o un)
Vo(vi=u1r A f(v1, .., 0n)=u2 Ao A f(V1, 0 Un) Un)
Vo (vicur Avasug A A f(r, ., Un) = Un)
Voo
V (viur Avaug A .. A Un>-uy)
Vorrflur,...,un) V.o Vo f(ur, ..., un)

(O2) t[s]=s—r T
if t[s] # s.

(03) S>t[s] —r L
(T1) s-tANt=s —gr L
(To) s~tAs-t—gr L

Figure 3: The rules of — g that deal with inequality.

where 1, ...z, are variables not occurring in t1, ..., t,, U1, ... Um, V1, . ..Uy and
where for every i, 1 < i < m either u; or v; is a variable and v; is not a subterm
of u; or vica versa. Every disjunct in this formula is called a solved form. Hence,
in a solved form every conjunct either states the value of a rigid variable, or it
constitutes an upper or lower bound for the value of a rigid variable. The part
1>ty A ... Axpt, is called the solved part and the part ui>vi A... AUp>vm
is called the constrained part of the solved form. If m = 0 we have a solution
for the constraint and do not have to take the next step.

4.3 Simple systems

In order to decide whether or not a solved form xz1~t; A ... Az, >~t, Aui>=vi A
oo N\ Uy vy, is satisfiable, one has to find out if a ground substitution for
the rigid variables exists such that the constraint holds according to LPO. The
solved form provides the substitutes for xy,...,x,. For the constrained part,
a set of simple systems has to be computed. For each simple system it can be
checked whether or not it is inconsistent. The solved form (and hence also the
original constraint) is satisfiable iff there is a simple system for the solved form
that is not inconsistent.

11

The set of simple systems for the constrained part ¢ of a solved form is computed
as follows:

e Compute the set sub(c) of all sub terms occurring in c.

e Consider all possible orderings of sub(c), where every sub term sy of s1 €
sub(c) occurs after sq.

e For each possible ordering, put either ~ or > between the terms in all
possible ways that are consistent with the original constrained part.

Example 6 Consider a constrained part c = f(g(x))>y. The set sub(c) is then
{f(g(x)),g(x),x,y}. The possible orderings of these sub terms are

(9(z)) , g(z) ;T ,
g(z)) , g(=) ;Y ,
g(x)) , vy ,og(x)

, flg(@) , glx)

When inserting either = or ~ between these terms consistently with the con-
strained part, we get a list of 27 simple systems:

88 8

(1) (2) (3)
flg(@))~=g(x)~r=y f(g(x))=g(x)-y~z f(g(z))=y~g(z)~z
flg(z))=g(x)=r~y f(g(x))~g(z)~y~x f(g9(x))=y~g(z)~x
flg(@)~g(z)~z~y f(g9(2))=g(x)~y~x f(g(z))=y~g(z)~z
flg(@)=g(x)~r~y f(g(x))=g(x)~y=z f(g(x))~y=g(z)~x
flg(@)=g(x)~r-y f(9(x))=g(x)-y~x
flg(@)=g(x)-zy fg(x))-g(z)-y>
flg(x))=g(z) x>~y

Ordering (4) does not produce any simply system, since y~=f(g(x)) and y>f(g(x))
are both inconsistent with the constrained part c.

For simple systems it is possible to check whether or not they are satisfiable,
by checking if they are trivially bottom. To check if a simple system is trivially
bottom, we check if it contains any of the following (subscript s means that the
(in)equality holds according to the simple system s):

f(s1,y...8n)~s9(t1,...,8m) with f different from g.
J(s1,0058p)=sf(s],...,8,) and (Fi € 1...p . =(si~ss7)).
s~4t and t is a proper subterm of s or vica versa.
J(s1,...,8p)=st with top(t)=rf and ~(Fi € 1...p . s;=,t).

F(s1y o sp)=sf(sh, ... sp) and =((s1,...,8p) =27 (s],.. ., 5])).

Gl N

12

5 Implementing Rigid-E unification

To implement rigid-E unification, one has to follow the steps described above.
In the following sections we will discuss how each step can be implemented effi-
ciently. The BSE calculus can be implemented fairly directly, since its complex-
ity is limited. Still we will provide some efficiency considerations. Computing
solved forms for the constraint of the BSE calculus will be done using the tech-
niques from Section 3 for Robinson unification. When checking satisfiability of
the constrained part of a solved form, we are mainly concerned about avoid-
ing to compute the entire set of simple systems. Instead, we will construct an
algorithm to search for one satisfiable simple system that meets the constraint.

5.1 Implementing the BSE calculus

The BSE calculus can be implemented almost directly. However, one should still
try to avoid computing the same result more than once. For this, we will consider
the application of a BSE rule to the rigid E-unification problem F s =1¢-C,
where E = {s; = t1,...,8, = tn} is represented by a list of equations, s =t is
called the goal of the unification problem and C is the satisfiable constraint so far.
Also, we will take into account the previous BSE rule applied to the unification
problem (if any). The general strategy for applying a rule is then as follows:
first check the side-conditions, then extend the constraint C piece by piece and
check satisfiability after every extension, and finally compute E’ and s’ =’ to
generate the rigid E-unification problem that makes up the conclusion of the
BSE rule. After the rule was applied, we first try to complete this derivation
by recursion (depth first). If application of the rule does not lead to a solution,
we try the next possible application by backtracking. We terminate the proof
search if all derivations have been tried or as soon as a solution has been found.

ER: The rule er is only tried initially and then only if the previous rule applied
was rrbs. The reason for this is, that if the rule could not successfully be
applied before and the goal did not change, it will not be applicable now, since
the constraint will only become more restrictive. If er is applied successfully,
the rigid E-unification is solved. Hence, if er should be tried, it should be tried
first.

RRBS: The rrbs rule is applied if the er could not be applied successfully, since
rrbs will change the goal and hopefully, er can be applied afterwards. According
to the rrbs rule, we have to take the following steps:

1. Extend C with s>t. If this fails, 7rbs is not applicable?.
2. For each equation [= r in E:

3. Try to extend C A st with [>-r. If this fails, pick another equation.

20f course one also has to try t>s, but we will not include this symmetry in our discussion

13

Compute all sub-terms of s that are not variables. Call this set S.
For each sub-term p in S:
Try to extend C A s»~t A l-r with [~p. If this fails, pick another sub-term.

NS ot

Since C A s>t A l>=r A l~p is satisfiable, we can successfully apply rrbs.
Therefore, we compute s[r] and recursively try to solve the rigid E-unification
problem E |- s[r] =t (C A s>t Al>-r Al~p). If this fails, we pick another
sub-term and continue. If it does not fail, we also have a solution to the
original unification problem.

8. If all sub-terms have been tried for all equations and no solution has been
found, rrbs is not the next rule to be applied.

If the previous rule applied was [rbs, we need not to consider all equations in
E. Irbs is tried after rrbs has been tried and also Irbs does not change the goal.
Hence, all equations in F that have not been altered by [rbs have already been
tried on the goal with rrbs during the previous step. Therefore, we will restrict
the choice of [= r to the equation that has been altered by Irbs in the previous
step and we only have to try all equations in E initially and if the previous rule
was rrbs.

LRBS: The rule Irbs is applied only if er and rrbs failed. The reason for this
is that it only changes equations in F and hence does not directly alter or solve
the goal. Also, since two equations are selected from E, there it can be applied
in very many ways. We use two indices 7 and j with ¢ # j to indicate the chosen
equations. s; = t; corresponds to [= r in the lrbs rule and s; = t; corresponds
to s[p] = t. The construction of the constraint is similar to rrbs and will not be
discussed here again. Assume that j ranges from 1 till n in an outer loop and
1 ranges from 1 till n in an inner loop. If a combination of 7 and j leads to a
successful application of lrbs, we do not need to try the full ranges again in the
derivation that follows: apparently, all combinations 7', ;" with 1 < ¢’ < n and
1 < j' < j failed. The combinations that need to be tried within the remainder
of the derivation are ¢',j" with ¢/ = j and 1 < j’ < j (since the equation at
position j has changed) and those with 1 < <n and j <j <n (again j = j’
is included since the equation at position j has changed).

1innerloop ; n
ECCTTTTITTTT T T T TS T T T T TTITTTTTTTITT]

1 outer loop J% pply n
ECTTTTTTIT T T T T TTTTTITITITIITTTTIT1T]

Figure 4: Selecting equations to apply LRBS

Unfortunately the BSE strategy above does not avoid all double computations,
but it already restricts them enough to get an efficient and fast implementation.

14

5.2 Computing solved forms

In Section 3 we computed a most general unifier without performing any sub-
stitutions on the expressions being unified and without using complicated data
structures. Also, we did not need to represent a set of equations to be unified.
In this section, we will use the same representation for substitutions and also
omit a set of equations and inequations to compute a set of solved forms for a
constraint. However, this time we will not start with a straightforward imple-
mentation and then transform the algorithm into something more efficient, but
rather present the final algorithm and explain its workings.

Notation and representation

The BSE calculus maintains a constraint as a conjunction of (in)equalities.
The rewrite system — g is then used to compute a disjunction of solved forms.
However, before implementing it, we will alter — g slightly. First of all, O1 will
only be used for the case where s is a variable. In all other cases, either D1, C1
or R applies, or the equation is part of the solved form. Also, we will omit T2
altogether, since it is superfluous. Like O1, we only need to consider the case
where s is a variable. Then T2’s left hand side s~t A s>t can be rewritten by
R to s~t A t>t and then by O3 to L.

In the implementation, a single solved form will be represented by a type called
”Solved”. Solved consists of two parts: (1) 6, which is a list of one point
mappings representing the solved part in the same way that the unifier 6 was
represented in Section 3. (2) ¢p’, which is a set of inequalities where at least
one of the left hand side or the right hand side is a variable not occurring in
the domain of 6’. The set ¢p’ represent the constrained part of the solved form.
Like the set S in our regular unification algorithm, the list cp’ represents the
inequations 6(cp’), where 0 is the substitution represented by 6’ of the same
solved form. Therefore cp’ may be represented by a simple list of pairs where
one element refers to a variable and the other element refers to a sub term that
already existed in the formulas making up the original constraint. Since no
substitutions will be actually performed, no sub terms have to be copied.

If sol represents a solved form (i.e. sol : Solved), its components are denoted
as sol.0’ and sol.cp’ and sol may be written as (8’ cp’).

Note that the solved form T is represented by an empty list of one-point map-
pings along with an empty set of inequalities. The solved form L cannot be
represented in this way. However, since we compute a set of solved forms,
rather than a single solved form, we represent | by the empty set of solved
forms. This is conform to the interpretation of a solved form as a conjunction
of partial constraints (T is the unity of A) and the interpretation of a set of
solved forms as a disjunction of solved forms (L is the unity of V).

Since the — i normal form of a constraint can consist of several solved forms,

15

we compute a set of solved forms rather than a single solved form. The type
representing a set of solved forms is denoted by ”{Solved}”.

Abstract code

The abstract algorithm to compute solved forms for a given (in)equality is given
in below. We provide line numbers to simplify the discussion that follows:

0 function makeEqual(sol :Solved; s,t:T) : {Solved} |
1 while (Je.s — e € s0l.0') — s:= sol.0'(s);
2 while (Fe.t — e € s0l.0) — t:= sol.0'(t);
3 ifseV —
4 if s=t — return {sol} //special case of rule D1
5 elseif (occursCheck(sol.0',s,t) — return §) //rule O1
6 else return addSubst(sol, s,t) //rule R
7 fi
8 elseif t € V — return makeEqual(sol,t, s)
9 else
10 let f(s0l.0'(s1),...,80l.0'(sy,)) = s,g(s0l.0'(t1),...,80l.0(ty)) == t;
11 if f=g — //rule D1

12 SOL:= {sol};

13 foreach i : 1 <i <n do H :=makeEqualSet(SOL, s;,t;) od;
14 return SOL

15 else return) //rule C1

16 fi

17 fi

18]|

19 function makeEqualSet(SOL: {Solved}; s,t:T) : {Solved} ||
20 return (| sol : sol €SOL:makeFqual(sol, s,t))
21

22 function addSubs(sol :Solved; v : V; t:T) : {Solved} |
23 H:={{< (v—t),s0l.0' > 0)};

24 for(s>t € sol.cp’) do H :=makeGreaterSet(H, s,t) od;
25 return H

26|

16

27 function makeGreater(sol :Solved; s,¢: T') : {Solved} ||

28 while (Je.s — e € s0l.0) — s:= s0l.0'(s);

29 while (Je.t — e € s0l.0) — t:= sol.0'(¢);

30 if(seV)v(teV) —

31 if s € V A occursCheck(sol.0',s,t) — return) //rule O3
32 elseif ¢t € VAoccursCheck(sol.0',t,s) — return {sol} //rule O2
33 elseif (t>-s) € sol.cp’ — return () //rule T1

34 else return {(sol.0', sol.cp’ U {s>~t})} //irreducable s>t
35 if

36 else

37 let f(0'(s1),...,0"(sn)) = 5,9(0'(t1), ..., 0 (tm)) 2 &;

38 iff>pg — //D2

39 H := {sol};

40 foreach i : 1 < i <m do H :=makeEqualSet(H, s, t;) od,;
41 return H

42 elseif g >r f — //D3

43 return (|Ji: 0 < i < n:makeEqual(sol, s;, t)U

makeGreater(sol, s;,t))
44 else //f=g — D4
45 S =(Ji:1<i<n:makeEqual(sol,s;,t)U
makeGreater(sol, s;,t));

46 eq := {sol};

47 for i :=1ton do

48 H :=makeGreater(eq, s;, t;);
49 foreach j:i+1 < j <n do H :=makeGreaterSet(H, s, t;) od,;
50 S:=SUH,

51 eq :=makeEqualSet(eq, s;, ;)
52 od;

53 return S

54 fi

5, fi

56 |

57 function makeGreaterSet(SOL: {Solved}; s,t:T) : {Solved} ||
58 return (|Jsol : sol €SOL:makeGreater(sol,s,t))
59

e makeEqual (lines 0 till 18) implements the rules D1, C1, R and O1. makeE-
qual is almost the same as the function unify in Section 3 to compute a regular
Robinson unification. However, it takes a solved form as input and not just a
list of one point mappings. The idea is that the solved form is extended such
that it also unifies (s) and 6(¢) if possible. It returns a set of solved forms that
satisfy this requirement. Note that this function will never abort, but instead
return an empty set of solutions.

e makeEqualSet (lines 19 till 21) is a convenience function to apply the previ-

17

ous function to a set of solved forms instead of a single solved form and return
the union of the results.

e addSubs (lines 22 till 26) implements the rule R and is called only by ma-
keEqual. Instead of only adjusting #’, which is as trivial as it was for unify,
addSubs also has to re-evaluate the constrained part of the solved form sol,
since these inequatinos also might contain references to the variable v. The re-
evaluation takes place by using makeGreater to add all the inequations of sol.cp’
to a solved form initially containing only sol.6’. This results in a complicated
mutually recursive pattern between makeEqual an makeGreater. Termination
of this recursion is discussed later.

e makeGreater (lines 27 till 56) implements all inequality rules of — g, except
T2. The idea of this function is that the solved form sol is extended to a solved
form that also satisfies 6(s)>6(¢). Instead of adding the constraint to a set
and rewriting it to a solved form, the rewriting takes place directly and only if
0(s)=0(t) is part of the solved form, s>t is added to sol.cp’. Lines 28 and 29
unfold the substitution far enough to decide on the first function symbol of 6(s)
and 6(t), just like is done in unify. The rules T1, O2 and O3 are applied in the
cases where 6(s) or 0(t) are a variable (lines 30 till 35). Rule D2 (lines 38 till 41)
is computed by recursively adding all the constraints of D2’s right hand side to
the solved form. Since every addition may return a set of solved forms, sol is put
in a set and makeGreaterSet is used instead of makeGreater. Rule D3 (lines 42
and 43) simply unites the solved forms obtained from extending sol with all
disjuncts of the right hand side of D3. Finally, D4 (lines 44 till 53) is computed
in two steps. In line 45 the disjuncts v1 = f(u1, ..., uy,) till v, = f(u, ..., u,) are
combined with sol to create the initial set S of solved forms that make up the
result. Then, in line 46 till 52 the remaining disjuncts of D4 are computed one
by one in variable H and joined with S. eq invariantly contains all solved forms
obtained by extending sol with the equalities si~t1,...s;_1~t;_1. Using this
invariant H can be initialized efficiently.

e makeGreaterSet (lines 57 till 59) is, like makeEqualSet, a convenience func-
tion to apply the function makeGreater to a set of solved forms instead of a
single solved form and return the union of the results.

Termination of the algorithm can be seen as follows: every recursive call ei-
ther deals with subterms of the original arguments (calls to makeEqual, ma-
keEqualSet, makeGreater or makeGreaterSet) or it eliminates one of the free
variables (calls to addSubs).

5.3 Computing a satisfiable simple system
When computing simple systems and checking their satisfiability, the vast amount

of possible simple systems causes problems. Therefore, we will not attempt to
implement an algorithm that produces all simple systems and then check the

18

satisfiability of each system. Instead, we will build a graph representing all sim-
ple systems that are consistent with the lpo and the constraints given by the
solved form. We can then use a backtracking algorithm on this graph to con-
struct the corresponding simple systems. During backtracking, we can compute
if the partial simple system obtained so far satisfies all constraints and cut off
the backtracking early if it does not. Also, we abort the algorithm altogether as
soon as one satisfiable simple system is found, since this is sufficient to conclude
that the original constraint is satisfiable.

In the simple systems graph the vertices represent sub terms and the edges
represent the Ipo-relationships between them. That is, the graph is constructed
as follows:

e Construct a list of all sub terms of all terms in the constrained part.

e Sort this list according to the partial ordening defined by the lpo (The
ordening is partial, since the sub terms contain variables).

e Represent the graph G by keeping track of the following: (1) the set of
all vertices, say G.V (2) the set of minimal vertices, say G.M (3) for each
vertex the set of direct successors, say G.s.

e Construct the simple systems graph, adding al sub terms from small to
large. This is simpler than adding them in random order, since we never
have to consider terms in the graph that are bigger than the term being
added.

e Add the edges representing the relations imposed by the constrained part
(By definition the left and right hand side of each inequation in the con-
strained part are incomparable, hence those edges cannot yet exist). When
adding these additional edges, we need to check if cycles are introduced.
If so, there will be no satisfiable simple systems, since the requirements
contradict each other.

To check a reduced set of possible simple systems for satisfiability, we use the al-
gorithm described below. This algorithm will search through all simple systems
s that are consistent with the simple systems graph (i.e. if according to the
graph t;>~tg, then t1>4t2). The arguments of the function have the following
meaning;:

e (G is the representation of the simple systems graph.

e S is a partial simple system constructed so far. Initially, S is empty.

e in is an array stating for every vertex v the number of incoming edges
when all vertices already in S are removed from the graph. If in[v] > 0,
v may not be used to extend S, since obviously other vertices have to be
added first. If v is already in S then infv] = —1.

e [evel is the number of > symbols already in S. Initially, this is 0.

19

e Jevels is an array stating for every vertex v with in[v] = 0 the minimum
value that level must have before it may be used to extend S. levels is
updated during recursion whenever a vertex v is selected to extend S. The
idea is that when v is (and the corresponding edges are) removed from G,
the vertices G.s(v) may not be prepended to extend S, unless at least one
> has been inserted after v.

0 function findSimpleSystem(G :Graph; S :SimpleSystem;
in : G.V — int;level : int;
levels : G.V — int
) {SimpleSystem}|[

1 r:=0
2 if |S|=E|GV]| — r:={S}
3 else
4 foreach v € G.V do
5 if injv] =0 —
6 infv] :== —1;
7 foreach n € G.s[v] do
8 inn] :=in[n] — 1;
9 levels[n] := level + 1
10 od;
11 if level > levels[v]Avalid(v~S) —
12 r := rUfindSimpleSystem(G, v~S, in, level, levels)
13 fi;
14 if valid(v=-S)A | S |£0 —
15 r := rUfindSimpleSystem (G, v, in, level + 1, levels)
16 fi
17 foreach n € G.s[v] do in[n] := in[n] + 1 od,;
18 infv] ;=0
19 fi
20 od
21 fi;
22 returnr
23 |

The function wvalid checks the satisfiability constraints of the simple system
that is its argument. It assumes that S is already satisfiable and only checks
whether or not the extension (either v~ or v>) introduces inconsistencies. This
is done by simply using the satisfiability constraints for simple systems stated
in Section 4.3. Note that constraint 3 does not need to be checked, since by
construction we get that if s is a proper sub term of ¢ or vice versa, then s~~t
will never be added to S.

For instance, when applied to Example 6, only 7 simple systems are inspected

20

by the algorithm:

flg(x))=g(x)=r~y f(g(x))=g(x)~y~x f(9(x))=y~g(z)~x
flg(@)=g(z)~z=y f(g9(2))=g(x)~y=z f(g(z))=y~g(z)~z
fg(x))=g(x)~y==

Note that any simple system which contains ¢;~t; has the same solutions as
the same simple system in which ¢; and t; are swapped. Therefore, extending
a simple system with ¢~ will only be considered if ¢ is greater than that of the
topmost term of the simple system according to some total ordering on terms
(e.g. the alphabetic ordering on textual representation of terms). This simple
addition cuts down the inspected simple systems to 5:

flg(@)=g(x)=z=y f(g(x))=g(x)=y~x f(g(x))=y~g(z)~z
flg(x))=g(x)=y=z f(g(x))-y~g(x)~x

Also, in practice the computation is aborted as soon as a satisfiable simple sys-
tem is found, since this already implies that the original constraint is satisfiable
as well.

6 Results

In this paper we have shown how to fully implement a rigid E-unification algo-
rithm. Although the problem itself has been shown to be NP-complete [6], we
paid much attention to efficiency.

The exponential character of the problem is only due to the checking of con-
straint satisfiability of constrained parts of solved forms. However, since in our
implementation al solved forms are computed first, we only need to perform
these checks if there are no solved forms without a constrained part.

In our practical tests so far it turns out that this is hardly ever necessary and
hence, most rigid E-unifications problems are solved without the exhaustive
search for a satisfiable simple system. This yields a very efficient implemen-
tation for practical purposes. For instance, the following rigid E-unification
problem (to compute Fibonacci number 2, with p is plus, s as successor and f
as Fibonacci) was solved in 1.235ms by our Java implementation:

p(X,0) = X,p(P,Q) = p(Q, P),
f(0) =0, f(s(0)) = 5(0), f(s(s(Y))) = p(f(Y), f(5(Y)))
Ff2)=1

Our next step will be the embedding of this rigid E-unifier in the tableaux based
theorem prover of Cocktail [5]. Here we will also consider optimizations of the
BSE calculus when many similar rigid E-unification problems have to be solved.
Also, we are interested in the possibility of translating the trees generated by

21

the BSE calculus into A-terms, since this would allow the full embedding of the
entire automated theorem prover in interactive systems like Coq [2].

References

1]

H. Comon, Solving symbolic ordering constraints, International Journal of
Foundations of Computer Science 1 (1990), no. 4, 387-412.

Coq, The Coq proof assistant, URL: http: //coq. inria.fr/, 2008.

A. Degtyarev and A. Voronkov, The undecidability of simultaneous rigid
E-unification, Theoretical Computer Science 166 (1996), no. 1-2, 291-300.

A. Degtyarev and A. Voronkov, What you always wanted to know about
rigid E-unification, Journal of Automated Reasoning 20 (1998), 47-80.

M. Franssen, Cocktail: A tool for deriving correct programs, Ph.D. thesis,
FEindhoven University of Technology, 2000.

J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder, Rigid E-unification
is NP-complete, In Proc. IEEE Conference on Logic in Computer Science
(LICS), IEEE, 1988, pp. 338-346.

J.H. Gallier, S. Raatz, and W. Snyder, Theorem proving using rigid E-
unification: Equational matings, IEEE Conference on Logic in Computer
Science (LICS), IEEE, 1987, pp. 338-346.

M. Giese, Proof search without backtracking for free variable tableauz, Ph.D.
thesis, Fakultét flir Informatik, Universitat Karlsruhe, July 2002.

Alberto Martelli and Ugo Montanari, An efficient unification algorithm,
ACM Transactions on Programming Languages and Systems 4 (1982),
no. 2.

R. Nieuwenhuis, Simple LPO constraint solving methods, Information Pro-
cessing Letters 47 (1993), no. 2, 65-69.

J.A. Robinson, A machine oriented logic based on the resolution principle,
Journal of the Association for Computing Machinery 12 (1965), no. 1, 23—
41.

R.E. Shostak, Deciding combinations of theories, 31 (1984), no. 1, 1-12.

C. Weidenbach, B. Afshordel, E. Keen, C. Theobalt, and D. Topié¢, Spass
theorem prover, URL: http: //spass.mpi-sb.mpg.de/, Max-Planck-
Institut fiir Informatik, 2007.

22

