
Integrating the Simplex Algorithm to the Tableau
Method

Guillaume Bury∗

Ens, Paris, France

The General Context

Automated theorem proving is a fundamental part of program verification, and there are now a
lot of automated provers with good capabilities. Handling arithmetic is an important challenge
of provers, because of its usage in most programs and theorems, and of the undecidability of
Peano arithmetic.

The Research Problem

Pressburger, or linear, arithmetic problems are often encountered in automated proving, whether
it be directly for program verification, or asserting coherence of compiler optimizations. There
are already many decision procedures for linear arithmetic, some of which integrated to auto-
mated theorem provers – the princess prover, for instance, implements the omega procedure –
though most of them do not produce proofs In this work I propose to use the general simplex
algorithm – a variant of the simplex algorithm for solving linear rational systems (without the
optimization problem) – in order to add arithmetic capabilities to the Zenon automated the-
orem prover. Zenon is a first order automated theorem prover developed at Inria, which uses
the tableaux method. The goal was to extend Zenon’s calculus so that the linear arithmetic
handling interleaves correctly with other parts of Zenon.

Your Contribution

I implemented an extension of Zenon for arithmetic calculus, and extended Zenon’s Coq backend
to produce correct proofs of arithmetic expressions by the Coq proof assistant. I choose to
hide most of the computations done by the simplex, keeping only the core of the explanation
returned by the simplex when the given system is unsatisfiable, and only the solution when the
system is satisfiable. This led to considering the simplex as a linear system solver black box in
some cases, allowing it to be possibly replaced by another algorithm if needed.

Arguments Supporting its Validity

The extended version of Zenon was tested against the TPTP problem library for automated
theorem provers, and more particularly, its arithmetic section, called ARI. Problems in ARI
cover integer, rational and real arithmetic, and uninterpreted functions and predicates. A large
part of these problems were solved, and all the corresponding Coq proofs (except for a few
isolated cases) were verified by the Coq compiler.

∗Supervised by David Delahaye, Cedric/Cnam/Inria Paris, France

Summary and Future Work
There are still some limitations coming from the simplex. For instance, the simplex does not
handle strict inequalities, which is a problem for rational problems. Indeed, for integer problems,
a strict inequality can be replaced by an equivalent large inequality (by adding 1 to one side
of the inequality), but htat is impossible for rational inequalities. Another limitation if that
the simplex cannot do abstract calculations : given the formula x ≤ a the simplex cannot solve
this system for x (considering a to be a constant). A solution for these limitations would be to
use the Fourier-Motzkin projection and/or the omega procedure in addition to the simplex in
order to deal with abstract computations.

Furthermore, support of uninterpreted functions and predicates could be added by using a
process similar to the purification sometimes used in SMT solvers : replace all expressions within
function arguments by variables along with adequate bindings, and then combine a congruence
closure algorithm with the arithmetic solver.

Contents
1 Zenon 3

1.1 The Tableau Method . 3
1.2 Rules and Quantifiers . 4

2 Solving Linear Systems 5
2.1 Conventions . 5
2.2 The General Simplex . 6
2.3 Example . 8
2.4 Generating Explanations . 9
2.5 Integer Problems . 10
2.6 Incrementality . 11

3 Unsat Systems 11
3.1 Inference Rules . 11
3.2 Implementation in Zenon . 13

4 Finding Instantiations 14
4.1 Arithmetic Constraint Trees . 14
4.2 Interleaving with Zenon . 15
4.3 Limitations of the Simplex . 16

5 Results 16
5.1 Optimizations . 16
5.2 Testing over TPTP Problems . 17
5.3 Coq Backend . 18

A LLproof rules 20

Introduction
Linear arithmetic problems are often encountered in automated proving, whether it be directly
for program verification, or asserting coherence of compiler optimizations. Indeed, most pro-
grams use built-in arithmetic, and often can be formalized in linear arithmetic. As an example
of problems that may be encountered in a compiler, let’s consider the following C code :

for (i =1; i <=10; i++)
a [j+i]=a [j] ;

A compiler may be interested in only getting the value of a[j] once before the loop instead
of getting it inside the loop each time, since memory access is usually slow, however, to ensure
this optimization is safe, the compiler must assert that the value of a[j] does not change within
the loop. One way to do so is to prove that there is no index collision in the loop, which can
be formalized by proving the following arithmetic formula :

∀i ∈ Z, 1 ≤ i ≤ 10⇒ j 6= j + 1

We worked on adding support for first order linear arithmetic expressions to the Zenon
automated theorem prover. Zenon relies on the tableau method, which makes it easy to translate
the internal representation of proofs into sequent calculus. We extended Zenon’s deduction rules
using the simplex algorithm as basis. To do so, we hide most, if not all, the computations done
by the simplex, only keeping either the unsatisfiability explanation, or the solution returned,
depending on the context. A similar work was done with the omega decision procedure[6] and
the automated prover Princess[7].

Two advantages of our approach over simple decision procedures are the interleaving between
the arithmetic solving and the logical reasoning of Zenon, allowing to prove more than just pure
arithmetic properties, and the proof generated by Zenon (in Coq [9] format) that allows the user
to check correctness of the result, while most of the other provers just output the satisfiability
of the given formula.

This report will first present the Zenon automated prover and the simplex algorithm, then
explain how we dealt with existential quantifiers, and universal quantifiers. Finally, we will
present the results of the implementation against the TPTP problem library[8].

1 Zenon
Zenon[1] is an automated first order theorem prover that uses the tableau method. In this
section, we will give a quick description of proof search in Zenon.

1.1 The Tableau Method
In the tableau method, starting from the negation of the goal, we apply inference rules to
generate a tree. When all branches of the tree are closed, the tree is closed and the tree is a
proof the formula at its root. This process produces an MLproof tree, usually presented in a
top-down fashion. During the proof search, all formulas encountered are considered to be true,
and used to find a contradiction. Intuitively, most MLproof rules can be seen as an implication.
Indeed a rule (in top-down presentation) Γ

Γ′
can be seen as (Γ,Γ′ ` ⊥) ⇒ (Γ ` ⊥) , and so

most of the time, be seen as an implication Γ⇒ Γ′.
The proof search can thus be seen as a process of deducing expressions (according to the

MLproof rules) and adding them to a growing environment of expressions, until two contradictory

expressions are found. As such, we will later consider MLproof trees as trees whose nodes are
labelled with a set of expressions, which represent the environment.

In order to produce formal proofs in a more usual format, this MLproof tree is then translated
into an LLproof tree. The LLproof rules describe a one-side sequent calculus where all sequents
are of the form :

Γ,Γ′ ` ⊥
Γ ` ⊥

Closure and Cut Rules

⊥�⊥ �
¬>�¬> � cut

P ¬P

¬Rr(t, t)
�r �

P,¬P
� �

Rs(a, b),¬Rs(a, b)
�s �

Analytic Rules

¬¬Pα¬¬
P

P ⇔ Q
β⇔ ¬P,¬Q P,Q

¬(P ⇔ Q)
β¬⇔ ¬P,Q P,¬Q

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨ ¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q

P ∨Q
β∨

P Q

¬(P ∧Q)
β¬∧ ¬P ¬Q

P ⇒ Q
β⇒ ¬P Q

∃x, P (x)
δ∃

P (ε(x).P (x))

¬∀x, P (x)
δ¬∀ ¬P (ε(x).¬P (x))

γ-Rules

∀x, P (x)
γ∀M

P (X)

¬∃x, P (x)
γ¬∃M

¬P (X)

∀x, P (x)
γ∀inst

P (t)

¬∃x, P (x)
γ∃inst

¬P (t)

Figure 1: MLproof rules

Figure 1 presents the core of MLproof rules, while the LLproof rules can be found in Ap-
pendix A.

1.2 Rules and Quantifiers
Zenon handles quantifiers through the use of metavariables (also called free variables in the
literature) for universal quantifiers, and of epsilon terms for existential quantifiers.

Epsilon terms are introduced when Zenon encounters an existential formula (or the negation
of a universal formula), and are simply witnesses of the given formula (since in the tableau
method, all formulas are considered true).

Metavariables are introduced when Zenon encounters a universal formula (or the negation
of an existential formula), and are some kind of wild cards. They can be instantiated with
any given expression, and so searching for a good instantiation (i.e one that will create a
contradiction with other hypotheses) is one of the main challenges. In the following, we write
a variable in lowercase and its metavariables in uppercase to distinguish between them.

Additionally, Zenon has a pruning system, as well as a proof caching system, which we will
not describe here, but which is useful in removing unused sections of the tree such as all the
nodes pertaining to metavariables before the formulas were instantiated.

For instance, let us consider an untyped example where we have an axiom ∀x, P (x) ∨Q(x)
and we want to prove P (a) ∨Q(a) where a is a constant. The search tree would looke like :

∀x, P (x) ∨Q(x),¬(P (a) ∨Q(a))
α¬∨ ¬P (a),¬Q(a)

γ∀M
P (X) ∨Q(X)

β∨
P (X)

γinst
P (a) ∨Q(a)

β∨
P (a)

� �
Q(a)

� �

Q(X)

At which point, Zenon is able to prune the tree by removing the γ∀M node, and get the
closed proof tree :

∀x, P (x) ∨Q(x),¬(P (a) ∨Q(a))
α¬∨ ¬P (a),¬Q(a)

γinst
P (a) ∨Q(a)

β∨
P (a)

� �
Q(a)

� �

2 Solving Linear Systems

2.1 Conventions
Here are some naming conventions that we use all along this report :

• Linear arithmetic expressions are built using the addition and multiplication (with the
condition, that at least one side of any multiplication is a numeric constant). Subtraction
can be seen as syntactic sugar for addition together with multiplication by a negative
constant.

• An arithmetic formula is a comparison of two linear arithmetic expressions, for instance
2x+ 1 < 7− 1

2y. There are 5 comparison operators that we consider : =, <,>,≤,≥.

• An arbitrary comparison operator distinct from the equality may be written ./, and its
negation ./, as follows :

./ ./

< ≥
≤ >
> ≤
≥ <

• An expression is a logical proposition that may use arithmetic expressions, for instance :

∀i ∈ Z, 1 ≤ i ∧ i ≤ 10⇒ j 6= j + 1

• The notation e 6= e′ is syntactic sugar for ¬ (e = e′).

2.2 The General Simplex
The general simplex as described in [4, ch 5.2] is a variant of the simplex algorithm, designed
to solve the satisfiability problem on linear systems, rather than the optimization of a given
objective function under a system of constraints. Given a linear rational system of constraints,
the general simplex either provides a solution of the system (i.e an assignment of all the variables
such that every constraint is respected), or returns an unsatisfiability certificate for the system
(see 2.4), i.e a linear combination from which a contradiction almost immediately follows.

The general simplex accepts only two forms of constraints :

1. Equations of the form : v =
∑
i aixi

2. Bounds on variables : li ≤ v ≤ ui

Where the coefficients ai are in Q, and the bounds li, ui in Q ∪ {−∞,+∞}. A system that
contains only formulas of either of the above forms is said to be in general form.

This representation does not restrict expressivity, given that any linear system can be trans-
lated to this representation. To do so, two transformations are required :

1. Any equality e = e′ is replaced by e ≤ e′ ∧ e′ ≤ e

2. Any comparison e ./ e′ is rewritten as f ./ k where f is a sum of variables with coefficients
and k a numeric constant1, such that e−e′ = f−k. The comparison can then be replaced
by x = f ∧ x ./ k, with x a fresh variable.

This transformation to general form adds an interesting property to the system : all variables
on the left-hand side of equalities do not appear on the right-hand side of equalities. From now
on, we suppose that all general forms satisfy this property i.e we only consider general forms
that come from the application of the process described above to a linear systems.

Internal state. The general simplex algorithm maintains an internal state which consists of :

• A set of variables called basic variables which represents the left-hand side variables.

• A set of variables called non-basic variables which represents the right-hand side vari-
ables.

• A matrix, which is a representation of the basic variables as linear functions of the non-
basic variables.

• A set of of inequalities on basic and non-basic variables

• An assignment α of the non-basic variables (a map from the non-basic variables to ratio-
nals).

1If f is the empty sum, the comparison is either trivially false in which case the system if unsatisfiable, or a
tautology in which case it is useless.

In the internal state, the set of inequalities is set at the beginning and will not change during
execution of the general simplex, while all other elements of the internal state are mutable.
Also, notice that from the assignment of the non-basic variables, one can deduce the complete
assignment of all the variables by using the tableau (when considering the value of a given
variable at a certain point in the algorithm, we refer to the value given to the variable v in the
full assignment by α (v)).

Given a linear system S in general form, the simplex algorithm works by iterating the same
steps, updating its internal state each time, until it finds a contradiction, or the full assignment
deduced from its internal state verifies all the inequalities in its internal state. Furthermore,
between each step, a number of invariants are verified :

In-1 The basic and non-basic variables are a partition of the set of variables occurring in S.

In-2 The matrix together with the inequalities represents a linear system logically equivalent
to S.

In-3 The assignment value of all non-basic variables is within the bounds of these variable (as
constrained by the inequalities).

Initialization. From a given linear system in general form, we can build the initial simplex
state as follows :

1. Set the set of basic variables to be the set of variables that appear on the left-hand side
of equalities.

2. Set the set of non-basic variables to be the set of all variables that appear on the right-hand
side of equalities.

3. The matrix directly follows from the set of equalities in the general form.

4. The set of inequalities is the same as that of the general form.

5. Set the assignment to assign all non-basic variables to 0 if it is within the bounds of the
variable, and to the bound that is the closest to 0 otherwise.

For instance, let us consider the linear system to be translated in general form : x+ y ≥ 2
2 ∗ x− y ≥ 0
−x+ 2 ∗ y ≥ 1

During the translation to the general form of this system, we introduce variables s1, s2, s3,
and we get the following matrix and its corresponding linear system :

x y
s1 1 1
s2 2 −1
s3 −1 2

s1 = 1 ∗ x+ 1 ∗ y
s2 = 2 ∗ x− 1 ∗ y
s3 = −1 ∗ x+ 2 ∗ y

together with the bounds : 2 ≤ s1 ≤ +∞, 0 ≤ s2 ≤ +∞ and 1 ≤ s3 ≤ +∞.

Pivot The pivot operation on two variables x (basic) and y (non-basic), switches x and y
so that x is now a non-basic variable and y a basic variable. To do so, it performs a usual
matrix pivot operation on the row of x and column of y in the matrix, then replaces y with x
in the set of non-basic variables (and vice-versa in the basic variables), and finally replace in
the assignment the binding of y with a binding from x to its value before switching.

For instance, to pivot s1 and x in the previous example, we need first to express x as a
function of s1 and y, which gives the first row of the new matrix : x = s1 − y. We can then
substitute x by s1 − y in the other rows, and we get the following matrix :

s1 y
x 1 −1
s2 2 −3
s3 −1 3

Algorithm The simplex algorithm is then as follows :

1. Decide of an arbitrary order on the variables

2. Look for a basic variable x whose value in the current assignment does not respect one of
its bounds b. If none exists, the current assignment is a solution.

3. Try to find the smallest suitable (see definition below) non-basic variable y for pivoting.
If none exists, the system is unsatisfiable.

4. Do the pivot operation on x and y, set the value of x to b

5. Go to 2

Given a variable x whose value α (x) in the current assignment does not respect one of its
bound, for instance its lower bound lx, and with a tableau expression x =

∑
i aiyi, a suitable

variable is a yj such that :

• aj > 0 and the current assignment of yj is strictly lower than its upper bound uyj

• aj < 0 and the current assignment of yj is strictly higher than its lower bound lyj
With a symmetric case for when variable x does not respect its upper bound.

The termination of the general simplex algorithm is ensured by Bland’s rule : by choosing
the smallest suitable variable (according to the ordering decided at the beginning), we ensure
no set of basic variables is repeated. See [2] for a detailed proof. Since the algorithm always
terminates and returns the status of the problem (either unsatisfiable or satisfiable), the simplex
is a decision procedure for the satisfiability of rational linear systems.

There exists some optimizations for the simplex, such as gomory cuts [3], but we did not
implement them in order to keep the unsatisfiability explanation generated as simple as possible.

2.3 Example
Let us look at the system : x+y ≥ 2∧2x−y ≥ 0∧−x+2y ≥ 1 introduced above. The simplex
initial state for this system is :

x y
s1 1 1
s2 2 −1
s3 −1 2


x 7→ 0
y 7→ 0
s1 ≥ 2
s2 ≥ 0
s3 ≥ 3

We decide of the arbitrary order on the variables : x < y < s1 < s2 < s3. In the initial
assignment, α(s1) = 0 and so s1 does not respects its bounds. Since x is suitable and is the
smallest variable (according to our arbitrary ordering of the variables), we pivot s1 and x, and
assign 2 to s1 (which is now a non-basic variable) so that it respects its bounds. We get the
following state :

s1 y
x 1 −1
s2 2 −3
s3 −1 3


s1 7→ 2
y 7→ 0
s1 ≥ 2
s2 ≥ 0
s3 ≥ 3

Now, s3 does not respect its bounds, so we pivot it with y, which is suitable, assign 3 to it
and we get the following state :

s1 s3
x 2

3 − 1
3

s2 1 −1
y 1

3
1
3


s1 7→ 2
s3 7→ 3
s1 ≥ 2
s2 ≥ 0
s3 ≥ 3

We then pivot s2 with s1 and map s2 to 0 :

s2 s3
x 2

3
1
3

s1 1 1
y 1

3
2
3


s2 7→ 0
s3 7→ 3
s1 ≥ 2
s2 ≥ 0
s3 ≥ 3

The assignment now satisfies all inequalities and we have a solution : x 7→ 1, y 7→ 2.

2.4 Generating Explanations

When the simplex returns a solution, it is easy to see that it is correct solution to the linear
system. Let us explain how we can justify the unsatisfiable status of the linear system when
the simplex returns the unsatisfiable statement.

The simplex returns an unsatisfiable statement when in presence of a basic variable x whose
value α(x) in the current assignment does not respect one of its bound, for instance its lower
bound lx, meaning that α(x) < lx, and that there is no suitable variable for pivoting. If the
expression of x is : x =

∑
i aiyi, then that means that for every non-basic yi :

• if ai > 0, then α(yi) ≥ uyi , but since yi is a basic variable, it must respect its bound, and
so α(yi) = uyi

• if ai < 0, then α(yi) ≤ lyi , but since yi is a basic variable, it must respect its bound, and
so α(yi) = lyi

• A variable without bounds (lyi = −∞, uyi = +∞) is always suitable for pivoting.

So, by partitioning the indices in two sets N+ = {i|ai > 0} and N− = {i|ai < 0}, we have
that :

α(x) =
∑
i∈N+

aiuyi +
∑
i∈N−

ailyi

α(x)− x =
∑
i∈N+

ai(uyi − yi) +
∑
i∈N−

ai(lyi − yi)

α(x)− x ≥ 0

From that we deduce that : x ≤ α(x) < lx, and so x < lx, which is clearly absurd since
we must have that x ≥ lx. We will see in Section 3.1 how to formalize these explanations as
MLproof rules during the proof search.

2.5 Integer Problems

So far, we have described a decision procedure for rational linear systems. In order to solve
integer linear systems, we need to use a strategy, called branch-and-bound.

An integer linear system can be seen as a rational system where all variables are required
to have an integer value. For that reason, we can accept rational coefficient in the system :
given a constraint with rational coefficients, we multiply it by the greatest common divisor of
the denominators of the coefficient in order to get an equivalent constraint.

We call relaxed system of S, and we write relaxed(S), the system S without the condition
that the variables must have an integer assignment.

Branch-and-bound The branch-and-bound algorithm for a linear system S is the following :

• Run the simplex algorithm on relaxed(S).

– If the system is unsatisfiable, return false

– If the system has a solution :

∗ If a non-integer value v is assigned to a variable x, call the branch-and-bound
twice, with the systems, S ∪ {x ≤ bvc} and S ∪ {x ≥ bvc + 1}. Return the
disjunction of the two return values.

∗ If all the variables have an integer assignment, return true.

The choice over which variable to branch does not need to be specified, any variable (whose
value in the current assignment is not an integer) can be chosen. However, in our implementation
of the branch-and-bound algorithm, we chose to branch over the non-basic variables of the initial
problem first, so that the unsatisfiability explanation is easier to understand.

This algorithm is not complete : if we consider the system 1 ≤ 3x+ 3y ≤ 2, the branch-and
bound will loop forever. That will happen for any system with unbounded rational solutions
but no integer solution. To solve this problem, we can add a global bounds on the variables at
the beginning of the problem.

To ensure termination of the branch-and-bound, we use global bounds found in [5, I.5.4].
Given an m× n rational matrix A = (ai) and a vector b ∈ Qm, let us call P = {x ∈ R|Ax ≤ b}
the set of real solution, then if the set S = P ∪Zn of integer solutions is non-empty, then there

exists an integer solution x ∈ S such that |xj | ≤ ωA,b for all 1 ≤ j ≤ n, with ωA,b =
(

2n′
2
θ
)n′

where n′ = max(n,m) and θ = maxij(|aij |).
For the system 1 ≤ 3x + 3y ≤ 2, the global bound evaluates to ω = 576, while it is

ω′ = 157464 for the system 1 ≤ 3x+ 3y + 3z ≤ 2, in which case it is not usable in practice.

2.6 Incrementality
An interesting feature of the general-simplex algorithm, and of the branch-and-bound as well
(although a little less), is that both algorithms are incremental. For the simplex, adding an
inequality is quite simple :

1. if it is an inequality on a variable, simply add it to the set of inequalities of the internal
state of the simplex, and eventually adjust the value of the variable if the variable is
non-basic.

2. else, introduce a new basic variable, and add the corresponding equation to the matrix,
then add the bound for the newly created variable.

Since multiple additions of variable inequalities may lead to incoherent bounds for a variable,
we add a preliminary step to the simplex algorithm that checks the coherence of variables. This
allows for very practical use of the simplex, most notably, trying to solve each system after
adding an inequality, while other decision procedures such as omega [6] cannot make use of the
work done on a subsystem to solve a larger system.

3 Unsat Systems
In this section, we describe how to detect arithmetic contradictions, i.e unsatisfiable systems,
and the associated MLproof rules.

3.1 Inference Rules
We present in Fig. 2 the inference rules used to explicit arithmetic contradictions in the MLproof
tree, with the following notations :

• A system of constraints may be written with a matrix in order to be clearer : for instance
Ax ≤ b denotes the system of inequalities

∑
j ai,jxj ≤ bi for 1 ≤ i ≤ n, with A a n ×m

rational matrix b an n rational vector, and x an m vector of variables.

• We write {Γ} for the container that represents the system Γ (see definition below).

The main challenge of these rules if that, in order to benefit from the global bound, one needs
to be careful. Indeed, if we use an inequality deduced from the global bound, together with an
inequality that is not included in the system that was used to deduce the global bound used,
it may lead to false contradiction. For instance, consider the satisfiable system x ≥ 1 ∧ x ≥ 3.
The global bound for the subsystem x ≥ 1, is ω = 2, and a solution such that |x| ≤ 2 can
be found, for instance x 7→ 1. However, the bounds −2 ≤ x ≤ 2, may create a contradiction
with the constraint x ≥ 3 and result in an unsatisfiable system although the initial system was
satisfiable.

To avoid using the global bound of a system with constraints outside of the system, we
introduce a notion of container : a container is actually a set of constraints, seen as a single

Constant Rules

a ./ bConst �
a = bConst � a ./ b (or a = b) is a trivially false

comparison of contants

Normalization rules

e = e′Eq
e ≤ e′, e′ ≤ e

e 6= e′
Neq

e < e′ e > e′

¬e ./ e′Neg
e ./ e′

e < f
Int-Lt

e ≤ f − 1

e > f
Int-Gt

e ≥ f + 1
e and f are integer expressions

Simplex rules

Ax ≤ b
Global s fresh{Ax− s = 0, s ≤ b,−ωA,b ≤ x ≤ ωA,b}

{Γ}
Branch x ∈ var(Γ), k ∈ Z

{Γ, x ≤ k} {Γ, x ≥ k + 1}

{Γ′, x ≤ k, x ≥ k′}
Conflict k < k′ numeric constants�

{Γ, e1 = 0, . . . , en = 0}
Simplex-lin ∀i, ai ∈ Q{

Γ, e1 = 0, . . . , en = 0,
∑n

i=1 aiei = 0
}

{
Γ =

(
Γ′, xj ≤ uj |j ∈ N+, xj ≥ lj |j ∈ N−, x =

∑
j∈N+∪N− ajxj

)}
Leq

(
aj > 0, j ∈ N+

aj < 0, j ∈ N−
){

Γ, x ≤
∑

j∈N+ ajuj +
∑

j∈N− aj lj
}

{
Γ =

(
Γ′, xj ≥ lj |j ∈ N+, xj ≤ uj |j ∈ N−, x =

∑
j∈N+∪N− ajxj

)}
Geq

(
aj > 0, j ∈ N+

aj < 0, j ∈ N−
){

Γ, x ≥
∑

j∈N+ aj lj +
∑

j∈N− ajuj

}

Figure 2: Simplex Rules for Unsatisfiability

object in the tableau rules. The global bounds for the system will be added during the creation
of the container, and other rules will add to the container constraints deduced from the formulas
already present within the container, until a contradiction is reached and the branch can be
closed. That way, the global bounds of a linear system cannot interact with constraints outside
of the system. The container is a way to restrict the environment considered when applying a
rule.

Implicit rewriting As they are, these rules may appear strange : for instance, the only
equalities introduced are of the form e = 0 but we also use equalities of the form x = e′ in
the rules, which may seem absurd since there can be no formula syntactically equal to it in

¬∀u ∈ Z,∀v ∈ Z,∀w ∈ Z, 2u+ v + w = 10 ∧ u+ 2v + w = 10⇒ w 6= 0
δ¬∀ ¬∀v ∈ Z,∀w ∈ Z, 2ε0 + v + w = 10 ∧ ε0 + 2v + w = 10⇒ w 6= 0

δ¬∀ ¬∀w ∈ Z, 2ε0 + ε1 + w = 10 ∧ ε0 + 2ε1 + w = 10⇒ w 6= 0
δ¬∀ ¬(2ε0 + ε1 + ε2 = 10 ∧ ε0 + 2ε1 + ε2 = 10⇒ ε2 6= 0)
β¬⇒ 2ε0 + ε1 + ε2 = 10 ∧ ε0 + 2ε1 + ε2 = 10,¬¬ε2 = 0

α∧
2ε0 + ε1 + ε2 = 10, ε0 + 2ε1 + ε2 = 10

α¬¬
ε2 = 0

Eq
2ε0 + ε1 + ε2 ≤ 10, 2ε0 + ε1 + ε2 ≥ 10

Var
a = 2ε0 + ε1 + ε2, a ≤ 10

Var
b = 2ε0 + ε1 + ε2, b ≥ 10

Eq
ε0 + 2ε1 + ε2 ≤ 10, ε0 + 2ε1 + ε2 ≥ 10

Var
c = ε0 + 2ε1 + ε2, c ≤ 10

Var
d = ε0 + 2ε1 + ε2, d ≥ 10

Eq
ε2 ≤ 0, ε2 ≥ 0

Branch
ε1 ≤ 3

Simplex-Lin
a = 2d− 3ε1 − ε2Geq

a ≥ 11
Conflict �

ε1 ≥ 4
Simplex-Lin

c = 1
2b+ 3

2ε1 + 1
2ε2Geq

c ≥ 11
Conflict �

Figure 3: MLproof search tree example for problem ARI178=1.p

a container. In order to keep the proof tree simple we choose not to represent the calculus
steps and only keep the logically meaningful transformations. In that setting, the rules are to
be understood modulo simple rewriting (factorizing coefficients of variables and computing the
result of constant expressions), much like what the ‘ring_simplify’ Coq tactic does.

While these rules allow for completeness, in practice the global bound is too high to be of
much use on any system with at least 3 constraints (or at least 3 variables). In practice, we
use a different version of these rules, without the use of containers, since we do not use the
global bounds. In the following, we will consider the rules without containers which have been
implemented in Zenon. Additionally, the rule Global is now replaced by a local introduction of
variable :

e ./ cVar s freshs = e, s ./ c

Where c is a numeric constant and e a non-empty sum of variables.
For instance let’s consider the following formula2 :

∀u ∈ Z,∀v ∈ Z,∀w ∈ Z, 2u+ v + w = 10 ∧ u = 2v + w = 10⇒ w 6= 0

We can derive the MLproof search tree in Fig. 3 from its negation.

3.2 Implementation in Zenon

There are two inference rules that need parameters and thus require the prover to carefully
choose those parameters : Branch and Simplex-lin. We describe here how Zenon uses the
branch-and-bound algorithm to make correct a use of these rules.

2It is the goal of the ARI178=1.p problem found in the ARI section of the TPTP library.

Each time Zenon encounters a formula that it has not seen yet, there are two cases. Either the
formula is a bound on a variable, in which case it is simply added to the current simplex state.
Or the rule Var is applied and a new variable generated. Additionally, each time a new variable
is added to the simplex state, Zenon tries to solve the system present in the simplex state. If
this yields an unsatisfiable statement, along with an explanation tree, then the explanation if
translated into MLproof rules and introduced in the proof tree, effectively closing the current
branch.

In order to translate the explanations given by the simplex into MLproof rules, we use the
rule Simplex-lin in order to get the expression used by the simplex in its explanation. We then
use either Leq or Geq depending on which one can be used. We can finally use the Conflict
rule to close the tree, since the simplex guarantees that the bound we just deduced will conflict
with another already present.

Thanks to the fact that the simplex is incremental, we have persistent simplex state that
allows to keep all the work already done up to a point when the proof tree branches.

4 Finding Instantiations
In order to find instantiations (for universal quantifiers) that lead to contradictions, we try to
find an instantiation of the variables that satisfy a carefully selected set of formulas. To do so,
we introduce the notion of cover for trees.

4.1 Arithmetic Constraint Trees
First, we define a few notions that relate to trees of formulas that we will use later to find
correct instantiation values for metavariables.

Definition An arithmetic constraint tree is a tree labelled with sets of arithmetic formulas.
In the following, trees will refer to arithmetic constrain trees.

Definition Given a tree T labelled with set of formulas, and a set of formula E , the set of
nodes of T covered by E is the least set of nodes n such that :

• Either label(n) ∩ E 6= ∅ (we say the node is directly covered)

• Or all children of n are covered by E

Definition A set of formulas E is said to cover a tree T if and only if the root of T belongs
to the set of nodes covered by E .

Definition A counter-example of a given tree T is an assignment of the variables of the
formulas of T such that there exists a set E that covers T and that in the assignment, all the
negation of the formulas in E are satisfied.

In order to find a counter-example of a given arithmetic constrain tree T , we simply need
to solve the negation of a system (a set of formulas) that cover T . To do so, we enumerate all
systems that covers T and try to solve each of them until we find a counter-example. We can
enumerate a sufficient set of covering sets with the following formula :

Cover(T) = {{f}|f ∈ label(T)} ∪ {
⋃

1≤i≤n

si|si ∈ Cover(T .[i])}

¬∃x ∈ Z, (x ≥ 0 ∨ x ≥ 1) ∧ (x ≤ −1 ∨ (x ≥ −5 ∧ x ≤ 0))
γ¬∃M

¬ ((X ≥ 0 ∨X ≥ 1) ∧ (X ≤ −1 ∨ (X ≥ −5 ∧X ≤ 0)))
β¬∧ ¬ ((X ≥ 0 ∨X ≥ 1))
α¬∨ ¬ (X ≥ 0) ,¬ (X ≥ 1)

Neg (≥)
X < 0

Int-Lt
X ≤ −1 *

Neg (≥)
X < 1

Int-Lt
X ≤ 0 *

Open

¬ ((X ≤ −1 ∨ (X ≥ −5 ∧X ≤ 0)))
α¬∨ ¬ (X ≤ −1) ,¬ (X ≥ −5 ∧X ≤ 0)

Neg (≤)
X > −1

Int-Gt
X ≥ 0 *

β¬∧ ¬ (X ≥ −5)
Neg (≥)

X < −5
Int-Lt

X ≤ −6 *
Open

¬ (X ≤ 0)
Neg (≤)

X > 0
Int-Gt

X ≥ 1 *
Open

* : formulas used in the arithmetic constraint tree.
Figure 4: Open MLproof tree of formula 4.2

With label(T), the label of the root of T , and T .[i] the i-th children of the root of T .

4.2 Interleaving with Zenon

Now, we can make the link with the proof search in Zenon. As stated before, a MLproof tree can
be seen as a tree labelled with sets of expressions. To make use of that tree to find instantiations,
we have to allow Zenon to return a tree with open branches (actually, these branches are closed
by a dummy node), because otherwise Zenon only returns when it finds a closed tree, which
is already a proof. Then we filter all the expressions in the tree and keep only the arithmetic
constraints. We can finally find a counter-example of the tree, and re-try to prove the formula,
this time directly instantiating quantified variables to the values of the counter-example.

Let us see what happens on an example. If we want to prove the formula :

∃x ∈ Z, (x ≥ 0 ∨ x ≥ 1) ∧ (x ≤ −1 ∨ (x ≥ −5 ∧ x ≤ 0))

We first take its negation, then decompose it using the MLproof rules of Zenon, and we get the
MLproof tree shown in Fig. 4. From that tree, we can get the following arithmetic constraint tree
by keeping the formulas marked in red (followed by an asterisk) in the figure, and collapsing
empty nodes :

[]

[X ≤ −1†;X ≤ 0] [X ≥ 0]

[X ≤ −6†] [X ≥ 1†]

During enumeration of the covering sets, we get for example to the formulas in green (fol-
lowed by a † in the arithmetic constraint tree) which form a set that covers the tree, and we
can thus try to solve the negation of these formulas, which gives the system :X ≤ −1

X ≤ −6
X ≥ 1

=⇒

 X ≥ 0
X ≥ −5
X ≤ 0

¬∃x ∈ Z, (x ≥ 0 ∨ x ≥ 1) ∧ (x ≤ −1 ∨ (x ≥ −5 ∧ x ≤ 0))
γ¬∃Inst

¬ ((0 ≥ 0 ∨ 0 ≥ 1) ∧ (0 ≤ −1 ∨ (0 ≥ −5 ∧ 0 ≤ 0)))
β¬∧ ¬ ((0 ≥ 0 ∨ 0 ≥ 1))
α¬∨ ¬ (0 ≥ 0) ,¬ (0 ≥ 1)

Neg (≥)
0 < 0

Const �

¬ ((0 ≤ −1 ∨ (0 ≥ −5 ∧ 0 ≤ 0)))
α¬∨ ¬ (0 ≤ −1) ,¬ (0 ≥ −5 ∧ 0 ≤ 0)
β¬∧ ¬(0 ≥ −5)

Neg (≥)
0 < −5

Const �

¬(0 ≤ 0)
Neg (≤)

0 > 0
Const �

Figure 5: Closed MLproof tree of formula 4.2

Which yields the counter-example : X 7→ 0. We can then rebuild the MLproof tree, this time
instantiating x with 0, which allows Zenon to close all the branches of the proof tree. We get
the proof tree in Fig. 5.

Zenon now alternates between normal MLproof search with its usual rules, and arithmetic
solving on the open tree, remembering the counter-example it finds as hints to instantiating for
the next round.

4.3 Limitations of the Simplex

As mentioned previously, the simplex algorithm (and by extension, the branch-and-bound al-
gorithm), has a few limitations.

First, the branch-and-bound is not complete since we abandoned the global bound. However,
since it only affects the cases where there are unbounded rational solutions but no integer
solutions, it does not affect the search for counter-examples.

The main limitation of the simplex is that it is not able to do abstract computations. More
specifically, every variable in formulas is treated in the same way in the simplex algorithm,
particularly, the simplex can assign to it any value. Additionally, the simplex always returns
assignment from variables to numeric values. This become problematic when there are more
than only metavariables in the formulas. For instance, let us suppose we are trying to prove the
following formula : ∃x ∈ Q, x ≤ a, where a is a constant (an implicit variable). The problem is
that we cannot send the expression X ≤ a to the simplex because in this context X and a are
fundamentally different : we cannot change the value of a, while we can freely choose the value
of X, but the simplex is not able to make that difference. For the simplex, every variable has
the same status, therefore it can not solve system with abstract variables. This also prevents
from solving system with epsilon variables coming from existentially quantified variables, thus
preventing Zenon to solve problems when there is an alternation of quantifiers.

5 Results

5.1 Optimizations

A few other rules have been implemented, in addition to the calculus rules described in Fig 2,
in order to alleviate some drawbacks of the simplex algorithm.

First, we have introduced two rules that tightens inequalities when possible. In our calculus,
we consider everything to be rational, seeing integer variables as rational variables whose value
is constrained to be an integer. As such, we can encounter inequalities such as x ≤ 1

2 where

x is an integer variable. In that case, we would like to deduce the inequality x ≤ 0. We thus
introduce two new calculus rules, with k a non-integral numeric constant, and x an integer
variable :

x ./ kTighten-Leq ./∈ {<,≤}
x ≤ bkc

x ./ kTighten-Geq ./∈ {>,≥}
x ≥ dke

These two rules are particularly efficient when used together with formula normalization :
when rewriting formulas, we try and put them in a normal form, i.e a formula which respects
these properties :

• The right side of the comparison operator is a numeric constant

• The left side is a sum of coefficients variables (if there are no variables, the left side is the
empty sum, which is 0)

• All the coefficients of the variables are integers, and the greatest common divisor of the
coefficients is 1.

Together, these two features allow us to make small reasonings about divisibility, for instance
the problem 1 ≤ 3x + 3y ≤ 2 will be rewritten in its normal form to a system equivalent to :
1
3 ≤ x+y ≤ 2

3 , and then after tightening will yield the system : 1 ≤ x+y ≤ 0, which is trivially
false.

Additionally, as mentioned Section 2.5, we chose to branch first on the non-basic variables
of the initial system during the branch-and-bound algorithm. Since normalization of arithmetic
expressions always gives constrains with integer coefficients, the initial tableau of the branch-
and-bound only has integer coefficients, so if all non-basic variables have an integer assignment,
then the values of the basic variables in that assignment must also be integers. We can then
branch only on the non-basic variables of the initial system during our branch-and-bound.

The other optimization is to use Fourier-Motzkin projection on all strict rational inequalities
encountered, since those are not taken into account by the simplex. However, integrating it into
the dynamic proof search of Zenon requires some changes : instead of taking a full and static
system and then eliminating variables one by one, we have to compute projections whenever we
encounter a new equation during the proof search. To ensure termination, or rather that only
a finite number of formulas is generated, we keep trace of all previous equations encountered
and then only project the smallest variable (according to an arbitrary order on variables) of the
new formula with the other formulas seen before that contain that particular variable and no
smaller variable. This guarantees that the smallest variable in the formulas generated is strictly
greater than the variable that we have eliminated.

Fourier-Motzkin projection is mainly used on the strict inequalities produced by the appli-
cation of the Neq rule. An example of the use of Fourier-Motzkin projection is shown on Fig.6.
Both times, the application of the Fourier-Motzkin projection eliminates the variable ε0. The
application of the rule on the left branch uses the two constraints : −ε ≤ −10 and ε0 < 10

1 , to
deduce 10 < 10

1 , whose normal form is 0 < 0.

5.2 Testing over TPTP Problems

The TPTP (Thousands of Problems for Theorem Provers) library[8] contains a section dedicated
to arithmetic problems, named ARI. Problems use integer, rational, and real arithmetic, unin-
terpreted functions and predicates, and first-order logic. Their complexity ranges from simple
comparison of numeric constants to complex properties about uninterpreted functions, such as
proving 8 is a power of 2, or that 5 is not.

¬∀x ∈ Q, 174 + 23
4 = x⇒ x = 10

1δ¬∀ ¬(17
4 + 23

4 = ε0 ⇒ ε0 = 10
1)

α¬⇒
17
4 + 23

4 = ε0, ε0 6= 10
1Eq

−ε0 ≤ −10,−ε0 ≥ −10
Neq

ε0 <
10
1FM (ε0)

0 < 0
Const �

ε0 >
10
1FM (ε0)

0 < 0
Const �

Figure 6: MLproof search tree example for problem ARI257=1.p

Proved Solved Problems
302 312 388

Figure 7: Tests Results for Zenon with Arithmetic

Fig. 7 presents the results of the extended version of Zenon on the part of ARI concerning
integer and rational arithmetic (and not real arithmetic). The solved problems are the ones for
which Zenon has found a proof, while the proved ones are those for which the Coq proof that
Zenon outputs has been checked by the Coq proof assistant.

Among the problems not solved by Zenon are problems that uses built-in functions of the
TPTP language not yet supported, such as the $to_int function which translates a rational (or
a real) to the largest integer lesser or equal to the argument. Other problems are not solved
because of an alternation of quantifiers, or because uninterpreted functions and predicates are
not yet fully supported. Finally a few problems can not be solved by the simplex because they
use strict inequalities : for instance ∃x ∈ Q,∃y ∈ Q, x < y is not solved.

Sources for Zenon extended with arithmetic can be found at http://gbury.eu/public/
zenon-arith.tar.gz. The archive also contains the ARI section of the TPTP library and includes
a small script to automatically call Zenon on a list of problems.

5.3 Coq Backend

The main challenge of the Coq backend for Zenon was to lightly integrate the implicit rewriting
of arithmetic formulas into the Coq proofs without having to explicit all the rewriting, which
would have led to unnecessarily long and verbose proofs.

To do so, we chose to use cuts to introduce the rewritten formulas and then proving the
coherence of the rewriting using a normalization tactic. The normalization tactic puts all
formulas in the form : e ./ 0 for comparisons, and or e = 0 for equalities, and then uses
the ring_simplify tactic to normalize the expression e. Other lemmas such as distributivity over
division are also needed since the ring_simplify tactic uses only ring operation rewriting while Q
is also a field.

Only a few proofs are not validated by Coq, mainly for technical reasons. There are three
reasons that explain why 10 of the Coq proofs generated by Zenon are invalid :

• 7 proofs use functions and predicates that are not yet correctly translated from Zenon’s
LLproof to Coq proofs (such as the $is_int predicate, which returns true if a rational is also
an integer).

http://gbury.eu/public/zenon-arith.tar.gz
http://gbury.eu/public/zenon-arith.tar.gz

• Zenon automatic factorization of proofs using lemmas incorrectly identifies the variables to
be quantified in some of the lemmas, leading to wrongly specified lemmas. This happens
in 2 proofs.

• Zenon proofs use the congruence Coq tactic, which works only with the built-in equality of
Coq (Leibniz’s equality) which is different from the equality over rationals, and the tactic
therefore fails in one proof.

Conclusion
The simplex algorithm was successfully integrated to the tableaux method and implemented in
Zenon, which is now able to reason about linear rational and integer arithmetic. Additionally,
almost all proofs can be checked by the Coq proof assistant, which is an advantage when
comparing to other provers (like SMT solvers dealing with arithmetic but without producing
any proof). The results that we get from our naive implementation are satisfactory, and can
still be greatly improved. For instance, we could add gomory cuts to our implementation of the
simplex algorithm, and adapt the MLproof inference rules to take them into account.

The main improvement that could be made would be to use both the simplex and the omega
procedure. Indeed, the simplex is able to detect unsatisfiable systems, even when it requires
complex and abstract reasoning, however, it is not the case when trying to find instantiations,
because it is designed as an algorithm for solving ground linear systems. The Omega procedure
works by eliminating variables, each time producing a logically equivalent system with one less
variable than the previous. Using omega to simplify the system until the simplex can solve
it would allow us to overcome most of the limitations that we encountered when dealing with
metavariables.

References
[1] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An Extensible Automated The-

orem Prover Producing Checkable Proofs. In Logic for Programming Artificial Intelligence and
Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151–165, Yerevan (Armenia), October
2007. Springer.

[2] Bruno Dutertre and Leonardo de Moura. Integrating simplex with DPLL(T). Technical report,
SRI International, 2006.

[3] Ralph Gomory. An algorithm for integer solutions to linear problems. In Recent Advances in
Mathematical Programming, pages 269–302, 1963.

[4] Daniel Kroening and Ofer Strichman. Decision Procedures, An Algorithmic Point of View. Springer,
2008.

[5] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-Interscience,
New York, NY, USA, 1988.

[6] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence
analysis. CACM, 35(8):102–114, August 1992.

[7] Philipp Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic. 2008.

[8] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning (JAR), 43(4):337–362, December 2009.

[9] The Coq Development Team. Coq, version 8.1. INRIA, November 2006.
Available at: http://coq.inria.fr/.

A LLproof rules

Closure and quantifier-free rules

⊥ ⊥ ` ⊥ ¬> ¬> ` ⊥
ax

Γ, P,¬P ` ⊥

6=
t 6= t ` ⊥

Γ, P,¬¬P ` ⊥¬¬
Γ, P ` ⊥

Γ, P ` ⊥ Γ,¬P ` ⊥
cut

Γ ` ⊥

Γ, P ∧Q,P,Q ` ⊥
∧

Γ, P ∧Q ` ⊥
Γ, P ∨Q,P ` ⊥ Γ, P ∨Q,Q ` ⊥

∨
Γ, P ∨Q ` ⊥

Γ, P,¬Q,¬(P ⇒ Q) ` ⊥
¬ ⇒

Γ,¬(P ⇒ Q) ` ⊥
Γ,¬P, P ⇒ Q ` ⊥ Γ, Q, P ⇒ Q ` ⊥⇒

Γ, P ⇒ Q ` ⊥

Γ,¬P,¬Q,¬(P ∨Q) ` ⊥
¬ ∨

Γ,¬(P ∨Q) ` ⊥
Γ,¬P,¬(P ∧Q) ` ⊥ Γ,¬Q,¬(P ∧Q) ` ⊥

¬ ∧
Γ,¬(P ∧Q) ` ⊥

Γ, P ⇔ Q,¬P,¬Q ` ⊥ Γ, P ⇔ Q,P,Q ` ⊥⇔
Γ, P ⇔ Q ` ⊥

Γ,¬P,Q,¬(P ⇔ Q) ` ⊥ Γ, P,¬Q,¬(P ⇔ Q) ` ⊥
¬ ⇔

Γ,¬(P ⇔ Q) ` ⊥

Quantifier rules

Γ, P (c),∃x P (x) ` ⊥
∃

Γ, ∃x P (x) ` ⊥
Γ,¬P (c),¬∀x P (x) ` ⊥

¬∀
Γ,¬∀x P (x) ` ⊥

where c is a fresh constant

Γ, P (t), ∀x P (x) ` ⊥
∀

Γ, ∀x P (x) ` ⊥
Γ,¬P (t),¬∃x P (x) ` ⊥

¬∃
Γ,¬∃x P (x) ` ⊥

where t is any closed term

Figure 8: LLproof rules

	Zenon
	The Tableau Method
	Rules and Quantifiers

	Solving Linear Systems
	Conventions
	The General Simplex
	Example
	Generating Explanations
	Integer Problems
	Incrementality

	Unsat Systems
	Inference Rules
	Implementation in Zenon

	Finding Instantiations
	Arithmetic Constraint Trees
	Interleaving with Zenon
	Limitations of the Simplex

	Results
	Optimizations
	Testing over TPTP Problems
	Coq Backend

	LLproof rules

