Verifying models with Dolmen

Guillaume Bury! Francois Bobot?

July 6th, 2023 — SMT Workshop

10CamlPro SAS, Paris

2CEA-List, Université Paris-Saclay

Dolmen& Models

Introducing Dolmen

What is Dolmen 7

» Parser + Typechecker for :
SMT-LIB, TPTP, Dimacs, Alt-Ergo and
Zipperposition's format

» Usable as:
> an LSP server (i.e. text editor plugin)

» a CLI binary
-> used to check new benchmarks for the SMT-LIB

» an OCaml library
-> used in the frontend of Alt-Ergo and Colibri2

» Now also verifies SMT-LIB models !

Dolmen& Models

Validating models

Model validation for ground formulas:
» Term/formula evaluation
» Not ground breaking research?
» Often already done internally in provers

> Not very rewarding

Ypun intended

OoCaml! X9 Dolmen&Models

Validating models

Model validation for ground formulas:

>

vVvYyyvy

Term/formula evaluation

Not ground breaking research!

Often already done internally in provers
Not very rewarding

But useful, e.g. for SMT-COMP

pySMT can do something similar, but does not support all
theories

Ypun intended

OoCaml! X9 Dolmen&Models

Verifying models: Example

example.smt2

example.rsmt2

(set—logic ALL) sat

(define—fun a () Int) (

(define—fun b () Int) (define—fun a () Int 1)
(define—fun ¢ () Int) (define—fun b () Int 2)
(assert (= (+ a b) c)) (define—fun c () Int 3)
(check—sat))

dolmen --check-model=true -r example.rsmt2 example.smt2

Dolmen& Models

Evaluating expressions

Dolmen& Models

Typed expressions

» Variables (function parameter, let-bound variable)

» Constants (interpreted and non-interpreted symbols and
functions)

» Function application (Dolmen supports higher-order)

» Binders (let-bindings, lambdas)

» A pattern match, that is a scrutinee and a list of patterns and
arms:

match scrutinee with
| patternl -> arml

Dolmen& Models

Extensible values

Values are extensible: each theory can define its own kind of values
» Simple examples: bools, arbitrary size integers, . ..
» Datatypes: head constructors + list of values for arguments

» Functions: arity 4+ contents

» OCaml code (for builtins)
» Parameters + body
» Ad-hoc instances for polymorphic functions

Dolmen& Models

Evaluator structure

Three parts:

» Environment:
> represented (partial) models
» Maps variables and constants to values

» Core evaluator:
> Takes a (typed) expression and an environment, returns a value
» Handles the expression structure

» Theory-specific evaluation:

» Handles all builtin symbols (e.g. addition)
» Function from symbols to values
» Returned values can represent functions

Dolmen& Models

Core evaluator

» Variables: find it in the env

Dolmen& Models

Core evaluator

» Variables: find it in the env
» Constants:

» interpreted: ask the theory functions
» non-interpreted: find it in the env

Dolmen& Models

Core evaluator

» Variables: find it in the env
» Constants:
» interpreted: ask the theory functions
» non-interpreted: find it in the env
» Function application:
» Evalute the callee and arguments
» Function values have an arity
» Accumulate partial applications until reduction can be done

Dolmen& Models

Core evaluator

» Variables: find it in the env
» Constants:
» interpreted: ask the theory functions
» non-interpreted: find it in the env
» Function application:
» Evalute the callee and arguments
» Function values have an arity
» Accumulate partial applications until reduction can be done
» Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body

Dolmen& Models

Core evaluator

» Variables: find it in the env
» Constants:

» interpreted: ask the theory functions
» non-interpreted: find it in the env

» Function application:
» Evalute the callee and arguments
» Function values have an arity
» Accumulate partial applications until reduction can be done
» Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body
let x = defining_expr in body
» A pattern match: evaluate scrutinee, then match against each
pattern, and evaluate the correct arm
match scrutinee with
| patternl -> armi

Dolmen& Models

Builtin example: Algebraic datatypes

let mk head args =
Value.mk “ops { head; args; 1}

let eval_tester cstr value =
let { head; args = _ } = Value.extract_exn ~ops value in
if C.equal cstr head then Bool.mk true else Bool.mk false

let eval_dstr “eval env dstr cstr field tys arg =
let { head; args; } = Value.extract_exn “ops arg in
if C.equal cstr head then List.nth args field
else Fun.corner_case “eval env dstr tys [arg]

let builtins “eval env (cst : C.t) =
match cst.builtin with
| B.Constructor _ -> Some (Fun.fun_n “cst (mk cst))
| B.Tester { cstr; _ } ->
Some (Fun.mk_clos @@ Fun.fun_1 “cst (eval_tester cstr))
| B.Destructor { cstr; field; _ } ->
Some (Fun.mk_clos @@ Fun.poly “arity:1 “cst (fun tys args ->
match args with
| [argl] -> eval_dstr “eval env cst cstr field tys arg
| _ -> raise (Fun.Bad_arity (cst, 1, args))))
| _ -> None

olmen&Models

Evaluator library

Available as an OCaml library

type env (#* evaluation environments *)
type builtins =

eval: (env -> expr -> value) ->

env -> symbol -> value option
(** Evaluation of builtin symbols *)

val builtins : builtins list -> builtins
(*¥* Combine theory builtins functions *)

val mk_env : model -> builtins -> env
(#¥* Environment creation *)

val eval : Env.t -> expr -> value
(#¥* Evaluation function *)

OoCaml! X9 Dolmen&Models

Challenges

Dolmen& Models

Partially specified builtins

Some builtin symbols in SMT-LIB are only partially specified
» Real division by zero
» Integer division and modulo by zero
» In floating point logics:
» fp.min / fp.max
» fp.to_sbv, fp.to_ubv

» Datatype selectors/destructors

(declare—datatypes ((list 1)) ((par (alpha) (

(nil)
(cons (head alpha) (tail (list alpha)))
))))

(assert (= 0 (head (tail (as nil (list Int))))))

Dolmen& Models

Example: division by zero

(set—logic ALL)
(declare—fun a () Int)
(declare—fun b () Int)
(declare—fun c () Int)
(declare—fun d () Int)
(declare—fun z () Int)
(assert (= z 0))
(assert (= ¢ (div a z)))
(assert (= d (div b z)))
(assert (not (= c d)))
(check—sat)

z—0

a1l c—13 1—13

b—2 d—42 242

Dolmen& Models

Example: division by zero

z—0
a1l c—13 113
b2 dw—42 242
sat (
(define—fun z () Int 0)
(define—fun a () Int 1)
(define—fun b () Int 2)
(define—fun ¢ () Int 13)
(define—fun d () Int 42)
(define—fun div ((x Int) (y Int)) Int
(ite (and (= x 1) (=y 0)) 13
(ite (and (= x 2) (= y 0)) 42
(div x y)))))

OoCaml! X9 Dolmen&Models

Completing partially defined symbols

Solution:
» Models can define partially specified builtin symbols

» In theory evaluation functions, when a builtin is applied in an
unspecified case, find the completed interpretation in the env,
and evaluate it

» During that evaluation, the re-definition is removed from the
environment/model (to avoid infinite recursion)

Dolmen& Models

Example: ADT selector

(set—logic ALL)
(declare—datatypes ((list 1)) ((par (alpha) (
(nil)
(cons (head alpha) (tail (list alpha)))))))
(assert (= 0 (head (tail (as nil (list Int))))))
(check—sat)

. Model
sat (
(define—fun head ((I (list Int))) Int
(match | (
(nil 0)

((cons hd tl) hd))))
(define—fun tail ((I (list Int))) (list Int)
(match | (
((cons hd tl) tl)

(nil (as nil (list Int)))))))

OoCaml! X9 Dolmen&Models

Statement evaluation dependencies

Problem file Model file

type definitions
define-fun,assert

Dolmen& Models

The problem: concrete example

(set—logic ALL)
(declare—fun b ()
(define—fun ¢ ()
1))
(declare—fun a ()
(assert (= a c))
(check—sat)

Int)
Int (+ b

Int)

sat

(
(define—fun a () Int 2)
(define—fun b () Int 1)

)

> We need to store the typed expression for c until we have a in

the model

» On bigger problems, we may need to store an arbitrary number
of expressions until they can be evaluated
> Typed expressions take a lot of space

Dolmen& Models

The problem: concrete example

(set—logic ALL)

(dec.lare—fun b () Int) ?at
(deﬁlne—fun c () Int (+b (define—fun a () Int 2)
)) (define—fun b () Int 1)

(declare—fun a () Int)
(assert (= a c))
(check—sat)

)

> We need to store the typed expression for c until we have a in
the model

» On bigger problems, we may need to store an arbitrary number
of expressions until they can be evaluated

> Typed expressions take a lot of space

» Alternatively, could store parsed model terms in memory,
assuming all expressions are values with no dependencies
(i.e. no sharing of sub-expressions beetween values)

OoCaml! X9 Dolmen&Models

Problem and solutions

» Problem: need to store arbitrary formulas to evaluate leater

» This can take a lot of memory !
» Potential solutions:
» Require that model definitions are in the same order as
declarations in the input problem
» Require that problem are ordered:
1. type definitions

2. constant declarations
3. term definitions and assertions

Dolmen& Models

Conclusion

Dolmen& Models

Conclusion

» Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)?

2 Algebraic numbers are implemented but not released yet, due to problems
with some dependencies
30Caml package manager

OoCaml! X9 Dolmen&Models

https://github.com/Gbury/dolmen

Conclusion

» Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)?
» Dolmen will be used to check models at SMT-COMP

2 Algebraic numbers are implemented but not released yet, due to problems
with some dependencies
30Caml package manager

OoCaml! X9 Dolmen&Models

https://github.com/Gbury/dolmen

Conclusion

» Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)?

» Dolmen will be used to check models at SMT-COMP

» Dolmen is available on Opam3, and at :
https://github.com/Gbury/dolmen
(binary releases available)

2 Algebraic numbers are implemented but not released yet, due to problems
with some dependencies
30Caml package manager

OoCaml! X9 Dolmen&Models

https://github.com/Gbury/dolmen

Conclusion

» Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)?

» Dolmen will be used to check models at SMT-COMP

» Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

» Try and verify your solver's (ground) models with Dolmen

2 Algebraic numbers are implemented but not released yet, due to problems
with some dependencies
30Caml package manager

OoCaml! X9 Dolmen&Models

https://github.com/Gbury/dolmen

Conclusion

» Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)?

» Dolmen will be used to check models at SMT-COMP

» Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

» Try and verify your solver's (ground) models with Dolmen

» Do not hesitate to submit issues !
(bugs, questions, extension proposals, . ..)

2 Algebraic numbers are implemented but not released yet, due to problems
with some dependencies
30Caml package manager

OoCaml! X9 Dolmen&Models

https://github.com/Gbury/dolmen

End

Questions 7

Dolmen& Models

Abstract values

Abstract values (e.g. for arrays) :

sat (
(define—fun a () (Array Int Int)
(let ((arr (as @a0 (Array Int Int))))
(store arr 1 42))))

Which interpretation ?
» Implicitly declared constant of the annotated type, therefore
forbidding any use of the same name with a different type
» Implicit polymorphic constant of type \forall a. a -> a,
constrained to the annotated type

(as @0 t1)
(as @0 t2)

Dolmen& Models

Function representation

type value_function =
| Lambda of {
ty_params : E.Ty.Var.t list;
term_params : E.Term.Var.t list;
body : E.Term.t; }
| Lazy of ... (* used for evaluating if-then-else *)
| Poly of {
arity : int;
cst : E.Term.Const.t;
eval_p : E.Ty.t list -> Value.t list -> Value.t; }
| Ad_hoc of {
arity : int;
ty_arity : int;
cst : E.Term.Const.t;
eval_1 : (E.Ty.t list * (E.Ty.subst -> value_function)) list; }
and t =
| Closure of {
func : value_function;
tys : E.ty list; (* type args #*)
args : E.term list; (* partial applications arguments #*)}

Dolmen& Models

Typed expressions

type 'ty id = {
id_ty : 'ty;
index : index;
path : Path.t;
builtin : builtin;
mutable tags : Tag.map; }
and type_ = Type
and ty_var = type_ id
and ty_cst = type_fun id
and ty_descr =
| TyVar of ty_var
| TyApp of ty_cst * ty list
| Arrow of ty list * ty
| Pi of ty_var list * ty
and ty = {
mutable ty_hash : hash;
mutable ty_tags : Tag.map;
mutable ty_descr : ty_descr;
mutable ty_head : ty; }

type term_var = ty id
and term_cst = ty id
and term_descr =
| Var of term_var
| Cst of term_cst
| App of term * ty list * term list
| Binder of binder * term
| Match of term * (pattern * term) L1:
and binder =
| Let_seq of (term_var * term) list
| Let_par of (term_var * term) list
| Lambda of ty_var list * term_var 1:
| Exists of ty_var list * term_var 1:
| Forall of ty_var list * term_var Ll:
and term = {

term_ty : ty;

term_descr : term_descr;

mutable term_hash : hash;

mutable term_tags : Tag.map;

Dolmen& Models

	Evaluating expressions
	Challenges
	Partially specified builtins
	Statement order

	Conclusion
	Appendix

