
Verifying models with Dolmen

Guillaume Bury1 Francois Bobot2

July 6th, 2023 – SMT Workshop

1OCamlPro SAS, Paris

2CEA-List, Université Paris-Saclay

Dolmen&Models 1/23

Introducing Dolmen

What is Dolmen ?
▶ Parser + Typechecker for :

SMT-LIB, TPTP, Dimacs, Alt-Ergo and
Zipperposition’s format

▶ Usable as:
▶ an LSP server (i.e. text editor plugin)
▶ a CLI binary

-> used to check new benchmarks for the SMT-LIB
▶ an OCaml library

-> used in the frontend of Alt-Ergo and Colibri2

▶ Now also verifies SMT-LIB models !

Dolmen&Models 2/23

Validating models

Model validation for ground formulas:
▶ Term/formula evaluation
▶ Not ground breaking research1

▶ Often already done internally in provers
▶ Not very rewarding

▶ But useful, e.g. for SMT-COMP
▶ pySMT can do something similar, but does not support all

theories

1pun intended

Dolmen&Models 3/23

Validating models

Model validation for ground formulas:
▶ Term/formula evaluation
▶ Not ground breaking research1

▶ Often already done internally in provers
▶ Not very rewarding
▶ But useful, e.g. for SMT-COMP
▶ pySMT can do something similar, but does not support all

theories

1pun intended

Dolmen&Models 3/23

Verifying models: Example

example.smt2

(s e t− l o g i c ALL)
(de f i n e−fun a () I n t)
(de f i n e−fun b () I n t)
(de f i n e−fun c () I n t)
(a s s e r t (= (+ a b) c))
(check−sat)

example.rsmt2

s a t
(

(de f i n e−fun a () I n t 1)
(de f i n e−fun b () I n t 2)
(de f i n e−fun c () I n t 3)

)

dolmen --check-model=true -r example.rsmt2 example.smt2

Dolmen&Models 4/23

Evaluating expressions

Dolmen&Models 5/23

Typed expressions

▶ Variables (function parameter, let-bound variable)
▶ Constants (interpreted and non-interpreted symbols and

functions)
▶ Function application (Dolmen supports higher-order)
▶ Binders (let-bindings, lambdas)
▶ A pattern match, that is a scrutinee and a list of patterns and

arms:
match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 6/23

Extensible values

Values are extensible: each theory can define its own kind of values
▶ Simple examples: bools, arbitrary size integers, . . .
▶ Datatypes: head constructors + list of values for arguments
▶ Functions: arity + contents

▶ OCaml code (for builtins)
▶ Parameters + body
▶ Ad-hoc instances for polymorphic functions

Dolmen&Models 7/23

Evaluator structure

Three parts:
▶ Environment:

▶ represented (partial) models
▶ Maps variables and constants to values

▶ Core evaluator:
▶ Takes a (typed) expression and an environment, returns a value
▶ Handles the expression structure

▶ Theory-specific evaluation:
▶ Handles all builtin symbols (e.g. addition)
▶ Function from symbols to values
▶ Returned values can represent functions

Dolmen&Models 8/23

Core evaluator

▶ Variables: find it in the env

▶ Constants:
▶ interpreted: ask the theory functions
▶ non-interpreted: find it in the env

▶ Function application:
▶ Evalute the callee and arguments
▶ Function values have an arity
▶ Accumulate partial applications until reduction can be done

▶ Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body
▶ A pattern match: evaluate scrutinee, then match against each

pattern, and evaluate the correct arm
match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 9/23

Core evaluator

▶ Variables: find it in the env
▶ Constants:

▶ interpreted: ask the theory functions
▶ non-interpreted: find it in the env

▶ Function application:
▶ Evalute the callee and arguments
▶ Function values have an arity
▶ Accumulate partial applications until reduction can be done

▶ Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body
▶ A pattern match: evaluate scrutinee, then match against each

pattern, and evaluate the correct arm
match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 9/23

Core evaluator

▶ Variables: find it in the env
▶ Constants:

▶ interpreted: ask the theory functions
▶ non-interpreted: find it in the env

▶ Function application:
▶ Evalute the callee and arguments
▶ Function values have an arity
▶ Accumulate partial applications until reduction can be done

▶ Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body
▶ A pattern match: evaluate scrutinee, then match against each

pattern, and evaluate the correct arm
match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 9/23

Core evaluator

▶ Variables: find it in the env
▶ Constants:

▶ interpreted: ask the theory functions
▶ non-interpreted: find it in the env

▶ Function application:
▶ Evalute the callee and arguments
▶ Function values have an arity
▶ Accumulate partial applications until reduction can be done

▶ Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body

▶ A pattern match: evaluate scrutinee, then match against each
pattern, and evaluate the correct arm

match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 9/23

Core evaluator

▶ Variables: find it in the env
▶ Constants:

▶ interpreted: ask the theory functions
▶ non-interpreted: find it in the env

▶ Function application:
▶ Evalute the callee and arguments
▶ Function values have an arity
▶ Accumulate partial applications until reduction can be done

▶ Binders: evaluate defining expr, bind it to the variable in the
env, then evaluate body

let x = defining_expr in body
▶ A pattern match: evaluate scrutinee, then match against each

pattern, and evaluate the correct arm
match scrutinee with
| pattern1 -> arm1
| ...

Dolmen&Models 9/23

Builtin example: Algebraic datatypes
let mk head args =

Value.mk ~ops { head; args; }

let eval_tester cstr value =
let { head; args = _ } = Value.extract_exn ~ops value in
if C.equal cstr head then Bool.mk true else Bool.mk false

let eval_dstr ~eval env dstr cstr field tys arg =
let { head; args; } = Value.extract_exn ~ops arg in
if C.equal cstr head then List.nth args field
else Fun.corner_case ~eval env dstr tys [arg]

let builtins ~eval env (cst : C.t) =
match cst.builtin with
| B.Constructor _ -> Some (Fun.fun_n ~cst (mk cst))
| B.Tester { cstr; _ } ->

Some (Fun.mk_clos @@ Fun.fun_1 ~cst (eval_tester cstr))
| B.Destructor { cstr; field; _ } ->

Some (Fun.mk_clos @@ Fun.poly ~arity:1 ~cst (fun tys args ->
match args with
| [arg] -> eval_dstr ~eval env cst cstr field tys arg
| _ -> raise (Fun.Bad_arity (cst, 1, args))))

| _ -> None

Dolmen&Models 10/23

Evaluator library

Available as an OCaml library
type env (** evaluation environments *)
type builtins =

eval:(env -> expr -> value) ->
env -> symbol -> value option

(** Evaluation of builtin symbols *)

val builtins : builtins list -> builtins
(** Combine theory builtins functions *)

val mk_env : model -> builtins -> env
(** Environment creation *)

val eval : Env.t -> expr -> value
(** Evaluation function *)

Dolmen&Models 11/23

Challenges

Dolmen&Models 12/23

Partially specified builtins

Some builtin symbols in SMT-LIB are only partially specified
▶ Real division by zero
▶ Integer division and modulo by zero
▶ In floating point logics:

▶ fp.min / fp.max
▶ fp.to_sbv, fp.to_ubv

▶ Datatype selectors/destructors

(d e c l a r e−da t a t yp e s ((l i s t 1)) ((par (a lpha) (
(n i l)
(cons (head a lpha) (t a i l (l i s t a l pha)))

))))
(a s s e r t (= 0 (head (t a i l (as n i l (l i s t I n t))))))

Dolmen&Models 13/23

Example: division by zero

(s e t− l o g i c ALL)
(dec l a r e−fun a () I n t)
(dec l a r e−fun b () I n t)
(dec l a r e−fun c () I n t)
(dec l a r e−fun d () I n t)
(dec l a r e−fun z () I n t)
(a s s e r t (= z 0))
(a s s e r t (= c (d i v a z)))
(a s s e r t (= d (d i v b z)))
(a s s e r t (not (= c d)))
(check−sat)


z 7→ 0

a 7→ 1 c 7→ 13 1
0 7→ 13

b 7→ 2 d 7→ 42 2
0 7→ 42

Dolmen&Models 14/23

Example: division by zero


z 7→ 0

a 7→ 1 c 7→ 13 1
0 7→ 13

b 7→ 2 d 7→ 42 2
0 7→ 42

s a t (
(de f i n e−fun z () I n t 0)
(de f i n e−fun a () I n t 1)
(de f i n e−fun b () I n t 2)
(de f i n e−fun c () I n t 13)
(de f i n e−fun d () I n t 42)
(de f i n e−fun d i v ((x I n t) (y I n t)) I n t

(i t e (and (= x 1) (= y 0)) 13
(i t e (and (= x 2) (= y 0)) 42
(d i v x y)))))

Dolmen&Models 15/23

Completing partially defined symbols

Solution:
▶ Models can define partially specified builtin symbols
▶ In theory evaluation functions, when a builtin is applied in an

unspecified case, find the completed interpretation in the env,
and evaluate it

▶ During that evaluation, the re-definition is removed from the
environment/model (to avoid infinite recursion)

Dolmen&Models 16/23

Example: ADT selector

(s e t− l o g i c ALL)
(d e c l a r e−da t a t yp e s ((l i s t 1)) ((par (a lpha) (

(n i l)
(cons (head a lpha) (t a i l (l i s t a l pha)))))))

(a s s e r t (= 0 (head (t a i l (as n i l (l i s t I n t))))))
(check−sat)
; Model
s a t (

(de f i n e−fun head ((l (l i s t I n t))) I n t
(match l (

(n i l 0)
((cons hd t l) hd))))

(de f i n e−fun t a i l ((l (l i s t I n t))) (l i s t I n t)
(match l (

((cons hd t l) t l)
(n i l (as n i l (l i s t I n t)))))))

Dolmen&Models 17/23

Statement evaluation dependencies

Problem file Model file

type definitions

declare-fun

define-fun,assert

define-fun

Dolmen&Models 18/23

The problem: concrete example

(s e t− l o g i c ALL)
(dec l a r e−fun b () I n t)
(de f i n e−fun c () I n t (+ b

1))
(dec l a r e−fun a () I n t)
(a s s e r t (= a c))
(check−sat)

s a t
(

(de f i n e−fun a () I n t 2)
(de f i n e−fun b () I n t 1)

)

▶ We need to store the typed expression for c until we have a in
the model

▶ On bigger problems, we may need to store an arbitrary number
of expressions until they can be evaluated

▶ Typed expressions take a lot of space

▶ Alternatively, could store parsed model terms in memory,
assuming all expressions are values with no dependencies
(i.e. no sharing of sub-expressions beetween values)

Dolmen&Models 19/23

The problem: concrete example

(s e t− l o g i c ALL)
(dec l a r e−fun b () I n t)
(de f i n e−fun c () I n t (+ b

1))
(dec l a r e−fun a () I n t)
(a s s e r t (= a c))
(check−sat)

s a t
(

(de f i n e−fun a () I n t 2)
(de f i n e−fun b () I n t 1)

)

▶ We need to store the typed expression for c until we have a in
the model

▶ On bigger problems, we may need to store an arbitrary number
of expressions until they can be evaluated

▶ Typed expressions take a lot of space
▶ Alternatively, could store parsed model terms in memory,

assuming all expressions are values with no dependencies
(i.e. no sharing of sub-expressions beetween values)

Dolmen&Models 19/23

Problem and solutions

▶ Problem: need to store arbitrary formulas to evaluate leater
▶ This can take a lot of memory !
▶ Potential solutions:

▶ Require that model definitions are in the same order as
declarations in the input problem

▶ Require that problem are ordered:
1. type definitions
2. constant declarations
3. term definitions and assertions

Dolmen&Models 20/23

Conclusion

Dolmen&Models 21/23

Conclusion

▶ Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)2

▶ Dolmen will be used to check models at SMT-COMP
▶ Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

▶ Try and verify your solver’s (ground) models with Dolmen
▶ Do not hesitate to submit issues !

(bugs, questions, extension proposals, . . .)

2Algebraic numbers are implemented but not released yet, due to problems
with some dependencies

3OCaml package manager

Dolmen&Models 22/23

https://github.com/Gbury/dolmen

Conclusion

▶ Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)2

▶ Dolmen will be used to check models at SMT-COMP

▶ Dolmen is available on Opam3, and at :
https://github.com/Gbury/dolmen
(binary releases available)

▶ Try and verify your solver’s (ground) models with Dolmen
▶ Do not hesitate to submit issues !

(bugs, questions, extension proposals, . . .)

2Algebraic numbers are implemented but not released yet, due to problems
with some dependencies

3OCaml package manager

Dolmen&Models 22/23

https://github.com/Gbury/dolmen

Conclusion

▶ Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)2

▶ Dolmen will be used to check models at SMT-COMP
▶ Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

▶ Try and verify your solver’s (ground) models with Dolmen
▶ Do not hesitate to submit issues !

(bugs, questions, extension proposals, . . .)

2Algebraic numbers are implemented but not released yet, due to problems
with some dependencies

3OCaml package manager

Dolmen&Models 22/23

https://github.com/Gbury/dolmen

Conclusion

▶ Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)2

▶ Dolmen will be used to check models at SMT-COMP
▶ Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

▶ Try and verify your solver’s (ground) models with Dolmen

▶ Do not hesitate to submit issues !
(bugs, questions, extension proposals, . . .)

2Algebraic numbers are implemented but not released yet, due to problems
with some dependencies

3OCaml package manager

Dolmen&Models 22/23

https://github.com/Gbury/dolmen

Conclusion

▶ Dolmen v0.9 can now verify ground models for all
theories/logics (except Strings)2

▶ Dolmen will be used to check models at SMT-COMP
▶ Dolmen is available on Opam3, and at :

https://github.com/Gbury/dolmen
(binary releases available)

▶ Try and verify your solver’s (ground) models with Dolmen
▶ Do not hesitate to submit issues !

(bugs, questions, extension proposals, . . .)

2Algebraic numbers are implemented but not released yet, due to problems
with some dependencies

3OCaml package manager

Dolmen&Models 22/23

https://github.com/Gbury/dolmen

End

Questions ?

Dolmen&Models 23/23

Abstract values

Abstract values (e.g. for arrays) :

s a t (
(de f i n e−fun a () (Ar ray I n t I n t)

(l e t ((a r r (as @a0 (Array I n t I n t))))
(s t o r e a r r 1 42))))

Which interpretation ?
▶ Implicitly declared constant of the annotated type, therefore

forbidding any use of the same name with a different type
▶ Implicit polymorphic constant of type \forall a. a -> a,

constrained to the annotated type

. . . (as @0 t1)
(as @0 t2) . . .

Dolmen&Models 24/23

Function representation

type value_function =
| Lambda of {

ty_params : E.Ty.Var.t list;
term_params : E.Term.Var.t list;
body : E.Term.t; }

| Lazy of ... (* used for evaluating if-then-else *)
| Poly of {

arity : int;
cst : E.Term.Const.t;
eval_p : E.Ty.t list -> Value.t list -> Value.t; }

| Ad_hoc of {
arity : int;
ty_arity : int;
cst : E.Term.Const.t;
eval_l : (E.Ty.t list * (E.Ty.subst -> value_function)) list; }

and t =
| Closure of {

func : value_function;
tys : E.ty list; (* type args *)
args : E.term list; (* partial applications arguments *) }

Dolmen&Models 25/23

Typed expressions

type 'ty id = {
id_ty : 'ty;
index : index;
path : Path.t;
builtin : builtin;
mutable tags : Tag.map; }

and type_ = Type
and ty_var = type_ id
and ty_cst = type_fun id
and ty_descr =

| TyVar of ty_var
| TyApp of ty_cst * ty list
| Arrow of ty list * ty
| Pi of ty_var list * ty

and ty = {
mutable ty_hash : hash;
mutable ty_tags : Tag.map;
mutable ty_descr : ty_descr;
mutable ty_head : ty; }

type term_var = ty id
and term_cst = ty id
and term_descr =
| Var of term_var
| Cst of term_cst
| App of term * ty list * term list
| Binder of binder * term
| Match of term * (pattern * term) list
and binder =
| Let_seq of (term_var * term) list
| Let_par of (term_var * term) list
| Lambda of ty_var list * term_var list
| Exists of ty_var list * term_var list
| Forall of ty_var list * term_var list
and term = {

term_ty : ty;
term_descr : term_descr;
mutable term_hash : hash;
mutable term_tags : Tag.map; }

Dolmen&Models 26/23

	Evaluating expressions
	Challenges
	Partially specified builtins
	Statement order

	Conclusion
	Appendix

