mSAT: A Modular SAT Solver

Guillaume Bury October 2, 2017

Université Paris Diderot; Inria; LSV, ENS Cachan

Introduction

- SAT/SMT Solving library in OCaml
- Modular: provide your own theory
- Proof producing: check your proofs in Coq

- Forked from Alt-Ergo-Zero
- Imperative design
- Functorized for modularity
- Generative functors

Introduction

SAT Solving

The SAT Algorithm

Some examples

SMT Solving

SMT Algorithm

Building your own SMT

Conclusion

SAT Solving

Input A set of clauses of propositional formulas, for instance:

$$P \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

Output Either:

- A model of the input clauses
- A proof the the clauses are unsatisfiable

Figure 1: Simplified SAT Solver architecture

- Maintain a partial propositional model
- Propagation
 - If there exists a clause C = a ∨ c₁ ∨ ... ∨ c_n, where every
 c_i → ⊥ in the current partial model, then add a → C ⊤ to the model
 - Record the clause C as the **reason** for the propagation of a
- Decision
 - When no propagation is possible
 - Choose an unassigned litteral a
 - Add $a \mapsto \top$ to the model

- When there is a clause $C = c_1 \lor \ldots \lor c_n$, where every $c_i \mapsto \bot$, begin analyzing with current clause C
- Walk back the propagations/decisions from most recent
- If the currently looked at atom is:
 - Not part of the current clause, continue
 - part of the current clause, and propagated by a clause *D*, perform a resolution between the current clause and *D*:

$$\frac{C \lor p \qquad \neg p \lor D}{C \lor D}$$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- New clause : $C_3 = \neg p(a)$, backtrack to before decision.

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- New clause : $C_3 = \neg p(a)$, backtrack to before decision.
- Propagation: $p(a) \rightsquigarrow_{C_3} \bot$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- New clause : $C_3 = \neg p(a)$, backtrack to before decision.
- Propagation: $p(a) \rightsquigarrow_{C_3} \bot$
- Decision: $p(b) \mapsto \top$

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- New clause : $C_3 = \neg p(a)$, backtrack to before decision.
- Propagation: $p(a) \rightsquigarrow_{C_3} \bot$
- Decision: $p(b) \mapsto \top$
- Propagation (nothing to do)

- $C_1 = \neg p(a) \lor p(b), C_2 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Decision: $p(a) \mapsto \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- New clause : $C_3 = \neg p(a)$, backtrack to before decision.
- Propagation: $p(a) \rightsquigarrow_{C_3} \bot$
- Decision: $p(b) \mapsto \top$
- Propagation (nothing to do)
- Model Found !

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- Resolution between $T_1 = \neg p(a)$ and $C_0 = p(a)$

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- Resolution between $T_1 = \neg p(a)$ and $C_0 = p(a)$
- Empty clause $C_4 = \bot$ reached

- $C_0 = p(a), C_1 = \neg p(a) \lor p(b), C_3 = \neg p(a) \lor \neg p(b)$
- Problem: find a model or a proof of false
- Propagation: $p(a) \mapsto_{C_0} \top$
- Propagation in $C_1 = \neg p(a) \lor p(b)$: $p(b) \rightsquigarrow_{C_1} \top$
- Conflict: $C_2 = \neg p(a) \lor \neg p(b)$ not satisfied
- Resolution between $C_2 = \neg p(a) \lor \neg p(b)$ and $C_1 = \neg p(a) \lor p(b)$
- Resolution between $T_1 = \neg p(a)$ and $C_0 = p(a)$
- Empty clause $C_4 = \bot$ reached
- Input problem is unsatisfiable

```
(* Module initialization *)
module Sat = Msat.Sat.Make()
module E = Msat.Sat.Expr (* expressions *)
module F = Msat.Tseitin.Make(E)
(* We create here two distinct atoms *)
let a = E.fresh ()
let b = E.make 1
```

(* Let's create some formulas *)
let p = F.make_atom a
let q = F.make_atom b
let r = F.make_and [p; q]
let s = F.make_or [F.make_not p; F.make_not q]

let () = Sat.assume (F.make_cnf r)
let _ = Sat.solve () (* Should return (Sat.Sat _) *)

let () = Sat.assume (F.make_cnf s)
let _ = Sat.solve () (* Should return (Sat.Unsat _) *)

SAT Solving - proofs

SMT Solving

Input A set of clauses of first-order formulas, for instance:

$$(a = b) \land (a <> c) \land (a <> d) \land (a = c \lor a = d)$$

Output Either:

- A model of the input clauses
- A proof the the clauses are unsatisfiable

Figure 2: Simplified SAT/SMT Solver architecture

Figure 2: Simplified SAT/SMT Solver architecture

- Leafs can be either:
 - A Hypothesis
 - A Theory lemma
- A theory lemma is a tautology in the theory, for instance:
 - Equality reflexivity: Lemma = (a = a)
 - Equality transitivty: Lemma = $\neg(a = b) \lor \neg(b = c) \lor (a = c)$
 - Equality substitution: Lemma = $\neg(a = b) \lor (f(a) = f(b))$


```
type negated = Negated | Same_sign
```

```
module type S = sig
type t
type proof
```

```
val hash : t -> int
val equal : t -> t -> bool
val print : Format.formatter -> t -> unit
```

```
val dummy : t
val neg : t -> t
val norm : t -> t * negated
end
```

```
type ('f, 'p) res = Sat | Unsat of 'f list * 'p
type 'f slice = { start:int; length:int; get:int -> 'f }
module type S = sig
 type f (** formulas *)
 type proof
 type level
  val dummy : level
  val current_level : unit -> level
  val backtrack : level -> unit
  val assume : (f, proof) slice -> (f, proof) res
 val if_sat : (f, proof) slice -> (f, proof) res
end
```

```
type 'f sat_state =
  { eval : 'f -> bool; ... }
type ('c,'p) unsat_state =
  { conflict: unit -> 'c; proof : unit -> 'p }
type res = Sat of formula sat_state
```

| Unsat of (clause, proof) unsat_state

```
val assume : ?tag:int -> atom list list -> unit
```

val solve : ?assumptions:atom list -> unit -> res

- Dot output
- Forma Coq output

Conclusion

regstab	SAT	binary only	only pure SAT
minisat			
sattools	SAT	C bindings	only pure SAT
ocaml-sat-solvers			
Alt-ergo	SMT	binary only	Fixed theory
Alt-ergo-zero	SMT	OCaml lib	Fixed theory
ocamlyices yices2	SMT	C bindings	Fixed theory

Performances

solver (package)	Alt-ergo-zero (aez)	mSAT (msat)	minisat (minisat sattools)	cryptominisat (sattools)
uuf100 (1000 pbs)	0.125	0.012	0.004	0.006
uuf125 (100 pbs)	2.217	0.030	0.006	0.013
uuf150 (100 pbs)	67.563	0.087	0.017	0.045
pigeon/hole6	0.120	0.018	0.006	0.006
pigeon/hole7	4.257	0.213	0.015	0.073
pigeon/hole8	31.450	0.941	0.096	2.488
pigeon/hole9	timeout (600)	8.886	0.634	4.075
pigeon/hole10	timeout (600)	161.478	9.579 (minisat) 160.376 (sattools)	72.050

- Pure OCaml SAT Solver
- Decent performances
- Modular
- Proof producing (Coq, and soon Dedukti)
- Available on opam, and on github: https://github.com/Gbury/mSAT

```
type proof
and proof_node = {
  conclusion : clause;
  step : step;
}
and step = 
   Hypothesis
   Assumption
   Lemma of lemma
   Duplicate of proof * atom list
   Resolution of proof * proof * atom
(** The type of reasoning steps allowed in a proof. *)
```